欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于取代型多酸复合材料的多巴胺电化学检测

  • 邢逸飞 ,
  • 李娜 ,
  • 温晓芳 ,
  • 韩宏彦 ,
  • 崔敏 ,
  • 张聪 ,
  • 任聚杰 ,
  • 籍雪平
展开
  • 1. 河北科技大学理学院化学系,河北 石家庄 050018
    2. 河北工业职业技术学院,河北 石家庄 050091
    3. 河北医科大学药学院,河北 石家庄 050017

收稿日期: 2019-07-16

  修回日期: 2019-12-13

  网络出版日期: 2019-12-16

基金资助

河北科技大学博士启动基金No(81/1181222);大学生创新创业训练计划项目No(2018065);河北省高等学校科学技术研究项目No(ZD2018037);河北省高等学校科学技术研究项目No(QN2019032);与国家自然科学基金资助No(81872669)

Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites

  • Yi-fei XING ,
  • Na LI ,
  • Xiao-fang WEN ,
  • Hong-yan HAN ,
  • Min CUI ,
  • Cong ZHANG ,
  • Ju-jie REN ,
  • Xue-ping JI
Expand
  • 1. Department of Chemistry, School of Science , Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
    2. Department of Construction Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, Hebei, China
    3. School of Pharmacy,Hebei Medical University, Shijiazhuang 050017, Hebei, China

Received date: 2019-07-16

  Revised date: 2019-12-13

  Online published: 2019-12-16

摘要

本文构建了基于取代型多酸与还原氧化石墨烯(RGO)复合材料的多巴胺电化学传感器. 首先,通过水热法合成了十一钨镍杂多钨硅酸盐K2H2SiW11NiO39·xH2O(SiW11Ni),利用Hummers法与化学还原法合成了还原氧化石墨烯. 并使用SEM、XRD与FTIR等测试方法对材料进行了表征. 将SiW11Ni与RGO按照一定的比例滴涂在玻碳电极表面,以便成功构建出传感界面(SiW11Ni-RGO/GCE). 然后,采用电化学阻抗法与循环伏安法等方法研究了传感界面的电化学性质. 优化实验条件后,利用该传感器通过循环伏安法对多巴胺进行定量检测,并且氧化过程展现出较为良好的性能. 其检出限为3.2 μmol·L -1S/N = 3),灵敏度为9.71 μA·(μmol·L -1·cm -2) -1,线性范围为10 ~ 80 μmol·L -1. 同时,所制备的传感器表现出良好的稳定性与抗干扰能力. 该传感器修饰过程简单、成本低、电化学性能良好,为多酸在化学传感领域的应用提供新思路.

本文引用格式

邢逸飞 , 李娜 , 温晓芳 , 韩宏彦 , 崔敏 , 张聪 , 任聚杰 , 籍雪平 . 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学, 2020 , 26(6) : 890 -899 . DOI: 10.13208/j.electrochem.190716

Abstract

In this report, a dopamine electrochemical sensor based on metal-substituted polyoxometalates and reduced graphene oxide (RGO) composite was successfully constructed. The K2H2SiW11NiO39·xH2O (SiW11Ni) was synthesized by hydrothermal method, while the RGO was prepared by Hummers' method and chemical reduction method. The above-mentioned materials were characterized by SEM, FTIR and XRD. The as-synthesized SiW11Ni and RGO composites were modified on the surface of glassy carbon electrode (GCE) by drop coating method, and the sensing interface (SiW11Ni-RGO/GCE) was successfully constructed. The electrochemical properties of the sensing interface were studied by electrochemical impedance spectroscopy and cyclic voltammetry. After optimizing the experimental conditions, dopamine could be quantitatively detected by cyclic voltammetry with good performance. The limit of detection was 3.2 μmol·L -1 (S/N = 3), the sensitivity was 9.71 μA·(μmol·L -1·cm -2) -1, and the linear range was 10 to 80 μmol·L -1.

参考文献

[1] Jennings K A . A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin[J]. ACS Chemical Neuroscience, 2013,4(5):704-714.
[2] Biosa A, Arduini I, Soriano M E , et al. Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2849-2858.
[3] Nam E, Derrick J S, Lee S , et al. Regulatory activities of dopamine and its derivatives toward metal-free and metal-induced amyloid-β aggregation, oxidative stress, and inflammation in Alzheimer's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2655-2666.
[4] Clark L F, Kodadek T . The immune system and neuroinflammation as potential sources of blood-based biomarkers for Alzheimer's disease, Parkinson's disease, and Huntington's disease[J]. ACS Chemical Neuroscience, 2016,7(5):520-527.
[5] Yorgason J T, Jones S R, Espa?a R A . Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection[J]. Neuroscience, 2011,182:125-132.
[6] Verlinden H . Dopamine signalling in locusts and other insects[J]. Insect Biochemistry and Molecular Biology, 2018,97:40-52.
[7] Lakkappa N, Krishnamurthy P T, Yamjala K , et al. Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018,149:457-464.
[8] Sun Y L, Lin Y N, Ding C F , et al. An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica@graphite oxide polymers[J]. Sensors and Actuators B: Chemical, 2018,257:312-323.
[9] De Benedetto G E, Fico D, Pennetta A , et al. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014,98:266-270.
[10] Diab N, Morales D M, Andronescu C , et al. A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine[J]. Sensors and Actuators B: Chemical, 2019,285:17-23.
[11] Jiao J, Zuo J W, Pang H J , et al. A dopamine electrochemical sensor based on Pd-Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes[J]. Journal of Electroanalytical Chemistry, 2018,827:103-111.
[12] Müller A, Peters F, Pope M T , et al. Polyoxometalates: Very large clusters nanoscale magnets[J]. Chemical Reviews, 1998,98(1):239-272.
[13] Teng D( 滕达), Wang Q( 王庆), Li N( 李娜 ), et al. Synjournal and electrochemical properties of supramolecular compounds based on POMs[J]. Journal of Molecular Science( 分子科学学报), 2019,35(2):148-154.
[14] Zhang L, Li S B, Zhang Z F , et al. Facile fabrication of reduced graphene oxide and Keggin-type polyoxometalates nanocomposite film for high performance electrocatalytic oxidation of nitrite[J]. Journal of Electroanalytical Chemistry, 2017,807:97-103.
[15] Zhu D, Guo D X, Zhang L L , et al. Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology[J]. Sensors and Actuators B: Chemical, 2019,281:893-904.
[16] Ensafi A A, Gorgabi-Khorzoughi M, Rezaei B , et al. Electrochemical behavior of polyoxometalates decorated on poly diallyl dimethyl ammonium chloride-MWCNTs: A highly selective electrochemical sensor for determination of guanine and adenine[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,78:56-64.
[17] Xing R M, Tong L Y, Zhao X Y , et al. Rapid and sensitive electrochemical detection of myricetin based on polyoxometalates/SnO2/gold nanoparticles ternary nanocomposite film electrode[J]. Sensors and Actuators B: Chemical, 2019,283:35-41.
[18] Pang Y H, Zhang Y, Sun X L , et al. Synergistical accumulation for electrochemical sensing of 1-hydroxypyrene on electroreduced graphene oxide electrode[J]. Talanta, 2019,192:387-394.
[19] Zhang X, Wu L, Zhou J W , et al. A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2015,742:97-103.
[20] Gao W, Tjiu W W, Wei J , et al. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide-Multiwalled carbon nanotube film modified glass carbon electrode[J]. Talanta, 2014,120:484-490.
[21] Liu Y, Huang Z, Xie Q J , et al. Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III)[J]. Sensors and Actuators B: Chemical, 2013,188:894-901.
[22] Prashanth S N, Teradal N L, Seetharamappa J , et al. Fabrification of electroreduced graphene oxide - bentonite sodium composite modified electrode and its sensing application for linezolid[J]. Electrochimica Acta, 2014,133:49-56.
[23] Li Z, Huang Y, Chen L , et al. Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film[J]. Sensors and Actuators B: Chemical, 2013,181:280-287.
[24] Ma R H( 马荣华), Liu C T( 刘春涛), Qu L Y( 瞿伦玉 ). Synjournal, characterization and electrochemical behavior of iron substituted tungstosilicates positional isomer[J]. Chinese Journal of Inorganic Chemistry( 无机化学学报), 2001,17(1):143-148.
[25] Albers R F, Bini R A, Souza J B , et al. A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials[J]. Carbon, 2019,143:73-84.
[26] Sun J H, Bai S L, Tian Y , et al. Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties[J]. Sensors and Actuators B: Chemical, 2018,257:29-36.
[27] Ma R H( 马荣华), Han Z Q( 韩泽群 ). Preparation and adsorption properties of β3-SiW11Ni/GO composites for methylene blue[J]. Chemical Reagents( 化学试剂), 2018,40(3):203-206.
[28] Zhao H Y, Ji X P, Wang B B , et al. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection[J]. Biosensors and Bioelectronics, 2015,65:23-30.
[29] Zhang Z X, Wang X L, Yang X R . A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics[J]. Analyst, 2011,136(23):4960-4965.
[30] Yan X Y, Gu Y, Li C , et al. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine[J]. Biosensors and Bioelectronics, 2016,77:1032-1038.
[31] Jin H, Zhao C Q, Gui R J , et al. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine[J]. Analytica Chimica Acta, 2018,1025:154-162.
[32] Wang J, Li Y M, Wu S F , et al. Study on the electrochemical properties of Salvianic acid a sodium and its analytical application[J]. Journal of the Chinese Chemical Society, 2012,59(8):947-952.
[33] Yang L, Liu D, Huang J S , et al. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2014,193:166-172.
[34] Li X Y, Lu X J, Kan X W . 3D electrochemical sensor based on poly(hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection[J]. Journal of Electroanalytical Chemistry, 2017,799:451-458.
[35] Numan A, Shahid M M, Omar F S , et al. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sensors and Actuators B: Chemical, 2017,238:1043-1051.
[36] Dincer C, Ktaich R, Laubender E , et al. Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection[J]. Electrochimica Acta, 2015,185:101-106.
[37] Gao F, Cai X L, Wang X , et al. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2013,186:380-387.
[38] Dong P F( 董鹏飞), Li N( 李娜), Zhao H Y( 赵海燕 ). Synjournal of Keggin polyoxometalates modified carbon paste electrode as a sensor for dopamine detection[J]. Journal of Electrochemistry( 电化学), 2018,24(5):555-562.
文章导航

/