固液界面双电层的理论计算模拟
收稿日期: 2019-01-07
修回日期: 2019-01-29
网络出版日期: 2020-04-16
基金资助
国家自然科学基金项目(21573149);国家自然科学基金项目(21533001);国家自然科学基金项目(91745201)
Insight into the Important Solid/Liquid Double Layer from First-Principles Calculations
Received date: 2019-01-07
Revised date: 2019-01-29
Online published: 2020-04-16
固液界面双电层在电化学中处于核心地位. 如何发展一个理论方法,在该方法的框架下计算双电层的平衡性质和动力学性质一直以来都是理论研究的难点和热点. 本文总结了最近十几年第一性原理计算方法在计算双电层平衡性质和电催化反应的进展,如热力学方法、反应中心模型以及双参考方法. 并进一步详细地阐述了基于周期性均匀介质溶剂化模型 ( DFT/CM-MPB)对于固液界面双电层的研究,该方法能够计算双电层的平衡性质(零电荷电势和微分电容)和表面相图,在此基础上能深入研究基元反应的电荷转移系数,并结合微观动力学推导出宏观的Tafel(电流-电势)曲线. 并列举了该方法对于重要电化学反应(如氢电极反应)的应用实例.
方亚辉 , 刘智攀 . 固液界面双电层的理论计算模拟[J]. 电化学, 2020 , 26(1) : 32 -40 . DOI: 10.13208/j.electrochem.181243
Solid/liquid double layer is of fundamental importance in electrochemistry. It has been a challenge and focus to understand the equilibrium and the dynamic phenomena (e.g., chemical reactions) at the electrode/electrolyte double layer in a unified theoretical framework. In recent years, rapid expansion and development have been done in the application of first principles density function theory (DFT) simulation on the double layer. This article reviews the current theoretical methods for electrochemistry modeling, such as reaction center model, thermodynamic method and double reference model. The progress in the computation procedures based on first principles periodic continuum solvation method (DFT/CM-MPB) for obtaining the differential capacitance, surface phase, charge transfer coefficient (CTC) and deducing the potential-dependent reaction rate are summarized in detail. Representative reactions, namely, hydrogen evolution reactions, are selected to illustrate how the theoretical methods are applied to compute quantitatively the kinetics of multiple-step electrochemical reactions.
[1] | Iwasita T, Xia X H . Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge[J]. Journal of Electroanalytical Chemistry, 1996,411(1/2):95-102. |
[2] | Garcia-Araez N, Climent V, Herrero E , et al. Thermodynamic approach to the double layer capacity of a Pt(111) electrode in perchloric acid solutions[J]. Electrochimica Acta, 2006,51(18):3787-3793. |
[3] | Cuesta A . Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: the potential of zero charge of Pt(111)[J]. Surface Science, 2004,572(1):11-22. |
[4] | Yang K L, Yiacoumi S, Tsouris C . Monte Carlo simulations of electrical double-layer formation in nanopores[J]. Journal of Chemical Physics, 2002,117(18):8499-8507. |
[5] | Yang K L, Yiacoumi S, Tsouris C . Canonical Monte Carlo simulations of the fluctuating-charge molecular water between charged surfaces[J]. Journal of Chemical Physics, 2002,117(1):337-345. |
[6] | Vossen M, Forstmann F . The structure of water at a planar wall an integral-equation approach with the central force model[J]. Journal of Chemical Physics, 1994,101(3):2379-2390. |
[7] | Kramer A, Vossen M, Forstmann F . The influence of image interactions on the structure of water and electrolytes in front of a metal surface[J]. Journal of Chemical Physics, 1997,106(7):2792-2800. |
[8] | Borukhov I, Andelman D, Orland H . Steric effects in electrolytes: A modified Poisson-Boltzmann equation[J]. Physical Review Letters, 1997,79(3):435-438. |
[9] | Abrashkin A, Andelman D, Orland H . Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces[J]. Physical Review Letters, 2007,99(7):077801. |
[10] | Kilic M S, Bazant M Z, Ajdari A . Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations[J]. Physical Review E, 2007,75(2):021503. |
[11] | Spohr E, Heinzinger K . Computer-simulations of water and aqueous-electrolyte solutions at interfaces[J]. Electrochimica Acta, 1988,33(9):1211-1222. |
[12] | Halley J W, Mazzolo A, Zhou Y , et al. First-principles simulations of the electrode vertical bar electrolyte interface[J]. Journal of Electroanalytical Chemistry, 1998,450(2):273-280. |
[13] | Huang J, Chen S . Interplay between covalent and noncovalent interactions in electrocatalysis[J]. The Journal of Physical Chemistry C, 2018,122(47):26910-26921. |
[14] | Spohr E . Molecular dynamics simulation studies of the density profiles of water between (9-3) Lennard-Jones walls[J]. Journal of Chemical Physics, 1997,106(1):388-391. |
[15] | Ou L H, Chen S L . Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT[J]. Journal of Physical Chemistry C, 2013,117(3):1342-1349. |
[16] | Zhang S M, Chen S L . Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction[J]. Journal of Power Sources, 2013,240:60-65. |
[17] | Gao J, Shi S Q, Li H . Brief overview of electrochemical potential in lithium ion batteries[J]. Chinese Physics B, 2016,25(1):018210. |
[18] | Wang A P, Kadam S, Li H , et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithiumion batteries[J]. npj Computational Materials, 2018,4:15. |
[19] | Koper M T M, van Santen R A . Electric field effects on CO and NO adsorption at the Pt(111) surface[J]. Journal of Electroanalytical Chemistry, 1999,476(1):64-70. |
[20] | Anderson A B . Electron-density distribution-functions and the ASED-MO theory[J]. International Journal of Quantum Chemistry, 1994,49(5):581-589. |
[21] | Zhang T, Anderson A B . Parameter dependence in the local reaction center model for the electrochemical interface[J]. Journal of Physical Chemistry C, 2009,113(8):3197-3202. |
[22] | Zhang T, Anderson A B . Oxygen reduction on platinum electrodes in base: Theoretical study[J]. Electrochimica Acta, 2007,53(2):982-989. |
[23] | Anderson A B, Neshev N M, Sidik R A , et al. Mechanism for the electrooxidation of water to OH and O bonded to platinum: quantum chemical theory[J]. Electrochimica Acta, 2002,47(18):2999-3008. |
[24] | Sidik R A, Anderson A B . Density functional theory study of O-2 electroreduction when bonded to a Pt dual site[J]. Journal of Electroanalytical Chemistry, 2002,528(1/2):69-76. |
[25] | Anderson A B, Neshev N M . Mechanism for the electro-oxidation of carbon monoxide on platinum, including electrode potential dependence theoretical determination[J]. Journal of The Electrochemical Society, 2002,149(10):E383-E388. |
[26] | Cai Y, Anderson A B . The reversible hydrogen electrode: Potential-dependent activation energies over platinum from quantum theory[J]. Journal of Physical Chemistry B, 2004,108(28):9829-9833. |
[27] | Norskov J K, Rossmeisl J, Logadottir A , et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004,108(46):17886-17892. |
[28] | Norskov J K, Bligaard T, Logadottir A , et al. Trends in the exchange current for hydrogen evolution[J]. Journal of The Electrochemical Society, 2005,152(3):J23-J26. |
[29] | Hansen H A, Rossmeisl J, Norskov J K . Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT[J]. Physical Chemistry Chemical Physics, 2008,10(25):3722-3730. |
[30] | Rossmeisl J, Logadottir A, Norskov J K . Electrolysis of water on (oxidized) metal surfaces[J]. Chemical Physics, 2005,319(1/3):178-184. |
[31] | Skulason E, Karlberg G S, Rossmeisl J , et al. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode[J]. Physical Chemistry Chemical Physics, 2007,9(25):3241-3250. |
[32] | Skulason E, Tripkovie V, Bjorketun M E , et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations[J]. Journal of Physical Chemistry C, 2010,114(42):18182-18197. |
[33] | Taylor C D, Neurock M . Theoretical insights into the structure and reactivity of the aqueous/metal interface[J]. Current Opinion in Solid State & Materials Science, 2005,9(1/2):49-65. |
[34] | Taylor C D, Wasileski S A, Filhol J S , et al. First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure[J]. Physical Review B, 2006,73(16):165402. |
[35] | Janik M J, Taylor C D, Neurock M . First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide[J]. Topics in Catalysis, 2007,46(3/4):306-319. |
[36] | Taylor C, Kelly R G, Neurock M . Theoretical analysis of the nature of hydrogen at the electrochemical interface between water and a Ni(111) single-crystal electrode[J]. Journal of Τhe Electrochemical Society, 2007,154(3):F55-F64. |
[37] | Cao D, Lu G Q, Wieckowski A , et al. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach[J]. Journal of Physical Chemistry B, 2005,109(23):11622-11633. |
[38] | Taylor C D, Kelly R G, Neurock M . A first-principles analysis of the chemisorption of hydroxide on copper under electrochemical conditions: A probe of the electronic interactions that control chemisorption at the electrochemical interface[J]. Journal of Electroanalytical Chemistry, 2007,607(1/2):167-174. |
[39] | Trasatti S, Lust E . The potential of zero charge[M]. Kluwer Academic/Plenum Publishers, New York, 2002,33:1-303. |
[40] | Janik M J, Neurock M . A first principles analysis of the electro-oxidation of CO over Pt(111)[J]. Electrochimica Acta, 2007,52(18):5517-5528. |
[41] | Kilic M S, Bazant M Z, Ajdari A . Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging[J]. Physical Review E, 2007,75(2):021502. |
[42] | Andreussi O, Dabo I, Marzari N . Revised self-consistent continuum solvation in electronic-structure calculations[J]. The Journal of Chemical Physics, 2012,136(6):064102. |
[43] | Hamada I, Sugino O, Bonnet N , et al. Improved modeling of electrified interfaces using the effective screening medium method[J]. Physical Review B, 2013,88:155427. |
[44] | Gunceler D, Letchworth-Weaver K, Sundararaman R , et al. The importance of nonlinear fluid response in joint density-functional theory studies of battery systems[J]. Modelling and Simulation in Materials Science and Engineering, 2013,21:074005. |
[45] | Fang Y H, Wei G F, Liu Z P . Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method[J]. Catalysis Today, 2013,202:98-104. |
[46] | Fang Y H, Wei G F, Liu Z P . Catalytic role of minority species and minority sites for electrochemical hydrogen evolution on metals: surface charging, coverage, and Tafel kinetics[J]. The Journal of Physical Chemistry C, 2013,117(15):7669-7680. |
[47] | Jinnouchi R, Anderson A B . Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory[J]. Physical Review B, 2008,77(24):245417. |
[48] | Fang Y H, Liu Z P . Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110)[J]. Journal of the American Chemical Society, 2010,132(51):18214-18222. |
[49] | Fattebert J L, Gygi F . Density functional theory for efficient ab initio molecular dynamics simulations in solution[J]. Journal of Computational Chemistry, 2002,23(6):662-666. |
[50] | Trasatti S . Structure of the metal/electrolyte solution interface: new data for theory[J]. Electrochimica Acta, 1991,36(11/12):1659-1667. |
[51] | Shang C, Liu Z P . Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution[J]. Journal of the American Chemical Society, 2011,133(25):9938-9947. |
[52] | Li Y F, Liu Z P, Liu L L , et al. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings[J]. Journal of the American Chemical Society, 2010,132(37):13008-13015. |
[53] | Bj?rketun M E, Zeng Z H, Ahmed R , et al. Avoiding pitfalls in the modeling of electrochemical interfaces[J]. Chemical Physics Letters, 2013,555:145-148. |
[54] | Fang Y H, Liu Z P . Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials[J]. Journal of Physical Chemistry C, 2009,113(22):9765-9772. |
[55] | Markovic N M, Grgur B N, Ross P N . Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions[J]. Journal of Physical Chemistry B, 1997,101(27):5405-5413. |
[56] | Wang J X, Springer T E, Adzic R R . Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes[J]. Journal of Τhe Electrochemical Society, 2006,153(9):A1732-A1740. |
[57] | Wei G F, Liu Z P . Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys[J]. Energy & Environmental Science, 2011,4(4):1268-1272. |
[58] | Wei G F, Fang Y H, Liu Z P . First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst[J]. Journal of Physical Chemistry C, 2012,116(23):12696-12705. |
[59] | Fang Y H, Liu Z P . First principles Tafel kinetics of methanol oxidation on Pt(111)[J]. Surface Science, 2015,631:42-47. |
/
〈 |
|
〉 |