欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

具备高效析氢催化效率的三维多孔氮化钒八面体催化剂

  • 尹 灿 ,
  • 付威威 ,
  • 方 玲 ,
  • 游时利 ,
  • 张慧娟 ,
  • 王 煜
展开
  • 重庆大学输配电装备及系统安全与新技术国家重点实验室, 重庆大学化学化工学院, 重庆 400044

收稿日期: 2018-11-12

  修回日期: 2019-04-22

  网络出版日期: 2019-10-28

Three-Dimensional Porous VN Octahedron Catalyst with High Electrocatalytic Efficiency toward Hydrogen Evolution Reaction

  • YIN Can ,
  • FU Wei-wei ,
  • FANG Ling ,
  • YOU Shi-li ,
  • ZHANG Hui-juan ,
  • WANG Yu
Expand
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, The School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044,China

Received date: 2018-11-12

  Revised date: 2019-04-22

  Online published: 2019-10-28

Supported by

This work was financially supported by the Fundamental Research Funds for the Central Universities (0301005202017), Thousand Young Talents Program of the Chinese Central Government (Grant No. 0220002102003), National Natural Science Foundation of China (NSFC, Grant No. 21373280, 21403019), Beijing National Laboratory for Molecular Sciences (BNLMS) and Hundred Talents Program at Chongqing University (Grant No. 0903005203205), The State Key Laboratory of Mechanical Transmissions Project (SKLMT-ZZKT-2017M11).

摘要

随着中国经济和社会的快速发展,能源需求和环境污染问题也日益渐长. 发展和开发高效清洁的新能源燃料可以有效地缓解能源危机和环境污染. 如今,研发高效、环境友好和低成本的催化剂仍是析氢反应的研究重点. 在此项研究中,作者首先通过煅烧处理方式制备了一种三维多孔的氮化钒八面体结构型的催化剂. 该催化剂具备高效的析氢效率,包括较低的过电位94.0 mV(在-10 mA·cm-2时),塔菲尔斜率为54.6 mV·dec-1,以及在酸性条件80小时展现出的优良稳定性,该氮化钒的析氢催化效率优于许多报道过的氮化物,其优良的催化效率可以归因于它独一无二的自身性质和大量的活性位点.

本文引用格式

尹 灿 , 付威威 , 方 玲 , 游时利 , 张慧娟 , 王 煜 . 具备高效析氢催化效率的三维多孔氮化钒八面体催化剂[J]. 电化学, 2019 , 25(5) : 579 -588 . DOI: 10.13208/j.electrochem.181142

Abstract

With the rapid development of China’s economy, the demand for energy is increasing, and environmental problems are becoming more and more serious. The development and utilization of highly-clean new energy fuel can effectively alleviate the energy crisis and environmental pollution. Nowadays, exploring high-efficiency, environment-friendly and low-cost catalysts remains the focus of research in the hydrogen evolution reaction (HER). In this research, firstly, we proposed a three-dimensional porous vanadium nitride (VN) with octahedral structure, which was prepared by a calcination treatment method. The VN catalyst showed a good electrocatalytic activity toward HER, involving a small overpotential of 94.0 mV at -10 mA·cm-2, a corresponding low Tafel slope of 54.6 mV·dec-1 and a great stability in an acidic medium for 80 h, which is much better than many reported nitrides. Moreover, the outstanding catalytic performance of VN toward HER could be ascribed to its unique composition nature and numerous active sites.

参考文献

[1] Tian J Q, Liu Q, Cheng N Y, et al. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water[J]. Angewandte Chemie International Edition, 2014, 53(36): 9577-9581.
[2]  Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
[3]  Xu Y F, Gao M R, Zheng Y R, et al. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen[J]. Angewandte Chemie International Edition, 2013, 52(33): 8546-8550.
[4]  Tian J Q, Liu Q, Asiri A M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. Journal of The American Chemical Society, 2014, 136: 7587-7590.
[5]  Liu T T, Liu Q, Asiri A M, et al. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions[J]. Chemical
Communications, 2015, 51(93): 16683-16686.
[6]  Liu D N, Lu Q, Luo Y L, et al. NiCO2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity[J]. Nanoscale, 2015, 7(37): 15122-15126.
[7]  Jiang P, Liu Q, Ge C J, et al. CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2014, 2(35): 14634-14640.
[8]  Tang C, Gan L F, Zhang R, et al. Ternary FexCo1-xP nano-wire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight[J]. Nano Letters, 2016, 16(10): 6617-6621.
[9]  Kong D S, Cha J J, Wang H T, et al. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy & Environmental Science, 2013, 6(12): 3553-3558.
[10]  Gao X H, Zhang H X, Li Q G, et al. Hierarchical NiCO2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angewandte Chemie International Edition, 2016, 55(21): 6290-6294.
[11]  Lu J J, Yin S B, Shen P K. Carbon-encapsulated electrocatalysts for the hydrogen evolution  reaction[J]. Electrochemical Energy Reviews, 2018, 2(1): 105-127.
[12]  Ma Z Y, Li Z C, Li S H, et al. Nanostructured Ni2N thin films magnetron-sputtered on nickel foam as efficient electrocatalyst for hydrogen evolution reaction[J]. Materials Letters, 2018, 229: 148-151.
[13]  Shalom M, Ressnig D, Yang X F, et al. Nickel nitride as an efficient electrocatalyst for water splitting[J]. Journal of Materials Chemistry A, 2015, 3(15): 8171-8177.
[14]  Chen J G G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities[J]. Chemical Reviews, 1996, 96(4): 1477-1498.
[15]  Shalom M, Molinari V, Esposito D, et al. Sponge-like nickel and nickel nitride structures for catalytic applications[J]. Advanced Materials, 2014, 26(8): 1272-1276.
[16]  Cao B F, Veith G M, Neuefeind J C, et al. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(51): 19186-19192.
[17]  Chen W F, Sasaki K, Ma C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angewandte Chemie International Edition, 2012, 51(25): 6131-6135.
[18]  Choi J G, Brenner J R, Colling C W, et al. Sybthesis and characterization of molybdenum nitride hydrodenitro genation catalysis[J]. Catalysis Today, 1992, 15(2): 201-222.
[19]  Oyama S T. Kinetics of ammonia decomposition on vanadium nitride[J]. Journal of Catalysis, 1992, 133(2): 358-369.
[20]  Xu H T, Wan J, Zhang H J, et al. A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V8C7 networks[J]. Advanced Energy Materials, 2018, 8(23): 1800575.
[21]  Lim B, Jiang M J, Camargo P H C, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932): 1302-1305.
[22]  Chen A C, Holt-Hindle P. Platinum-based nanostructured materials: synthesis, properties, and applications[J]. Chemical Reviews, 2010, 110(6): 3767-3804.
[23]  Kuttiyiel K A, Sasaki K, Chen W F, et al. Core-shell, hollow-structured iridium-nickel nitride nanoparticles for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2014, 2(3): 591-594.
[24]  Huang T Z, Mao S, Zhou G H, et al. Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction[J]. Nanoscale, 2014, 6(16): 9608-9613.
[25]  Xu Y L, Wang J, Shen L F, et al. One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors[J]. Electrochimica Acta, 2015, 173: 680-686.
[26]  Sun Q, Fu Z W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries[J]. Electro-chimica Acta, 2008, 54(2): 403-409.
[27]  Glaser A, Surnev S, Netzer F P, et al. Oxidation of vanadium nitride and titanium nitride coatings[J]. Surface Science, 2007, 601(4): 1153-1159.
[28]  Glushenkov A M, Hulicova-Jurcakova D, Llewellyn D, et al. Structure and capacitive properties of porous nano-
crystalline VN prepared by temperature-programmed ammonia reduction Of V2O5[J]. Chemistry of Materials, 2010, 22(3): 914-921.
[29]  Zhou X P, Chen H Y, Shu D, et al. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material[J]. Journal of Physics and Chemistry of Solids, 2009, 70(2): 495-500.
[30]  Bondarenka V, Grebinskij S, Mickevicius S, et al. Determination of vanadium valence in hydrated compounds[J]. Journal of Alloys and Compounds, 2004, 382(1/2): 239-243.
[31]  Mendialdua J, Casanova R, Barbaux Y. XPS Studies of V2O5, V6O13, VO2 and V2O3[J]. Journal of Electron Spectroscopy and Related Phenomena 1995, 71(3): 249-261.
[32]  Muratore C, Bultman J E, Aouadi S M, et al. In situ Raman spectroscopy for examination of high temperature tribological processes[J]. Wear, 2011, 270(3/4): 140-145.
[33]  Huang T Z, Mao S, Zhou G H, et al. Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction[J]. Nanoscale, 2014, 6(16): 9608-9613.
[34]  Shalom M, Ressnig D, Yang X, et al. Nickel nitride as an efficient electrocatalyst for water splitting[J]. Journal of Materials Chemistry A, 2015, 3(15): 8171-8177.
[35]  Liu L, Zhang H J, Yang J, et al. Self-assembled novel dandelion-like NiCO2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(44): 22393-22403.
[36] Jing S Y, Zhang L S, Luo L, et al. N-Doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction[J]. Applied Catalysis B - Environmental, 2018, 224: 533-540.
[37]  Zhang B, Xiao C H, Xie S M, et al. Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting[J]. Chemistry of Materials, 2016, 28(19): 6934-6941.
[38]  Zhu Y P, Chen G, Zhong Y J, et al. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst[J]. Advanced Science, 2018, 5(2): 1700603.
[39]  Choi B G, Chang S J, Lee Y B, et al. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries[J]. Nanoscale, 2012, 4(19): 5924-5930.
[40]  Mahmood N, Zhang C Z, Hou Y L. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries[J]. Small, 2013, 9(8): 1321-1328.
[41]  Zhang L S, Lu J J, Yin S B, et al. One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction[J]. Applied Catalysis B - Environmental, 2018, 230: 58-64.
[42]  Jing S Y, Lu J J, Yu G T, et al. Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution[J]. Advanced Materials, 2018, 30(28): 1705979.
[43]  Jing S Y, Wang D R, Yin S B, et al. P-doped CNTs encapsulated nickel hybrids with flower-like structure as efficient catalysts for hydrogen evolution reaction[J]. Electrochimica Acta, 2019, 298: 142-149.
[44]  Lu J J, Zhang L S, Jing S Y, et al. Remarkably efficient PtRh alloyed with nanoscale WC for hydrogen evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5993-5999.
[45]  Li G N, Li L, Yuan H Y, et al. Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets[J]. Journal of Colloid and Interface Science, 2017, 495: 19-26.
[46]  Galesic I, Kolbesen B O. Formation of vanadium nitride by rapid thermal processing[J]. Thin Solid Films, 1999, 349(1/2): 14-18.
[47]  Meng F L, Fang Z G, Li Z X, et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(24): 7235-7241.
[48]  Mahmood N, Zhang C Z, Liu F, et al. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode[J]. ACS Nano, 2013, 7(11): 10307-10318.
文章导航

/