太阳能光催化制氢研究进展
收稿日期: 2019-07-20
修回日期: 2019-08-20
网络出版日期: 2019-10-28
基金资助
国家自然科学基金项目(No. 21621091)和福建省自然科学基金(No.2017J01023)资助
Progress in Solar Photocatalytic Hydrogen Production
Received date: 2019-07-20
Revised date: 2019-08-20
Online published: 2019-10-28
吴 芝 , 孙 岚 , 林昌健 . 太阳能光催化制氢研究进展[J]. 电化学, 2019 , 25(5) : 529 -552 . DOI: 10.13208/j.electrochem.181147
[1] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces-principles, mechanizms, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758.
[2] Hameed A, Gondal M A. Laser induced photocatalytic generation of hydrogen and oxygen over NiO and TiO2[J]. Journal of Molecule Catalysis A: Chemical, 2004, 219(1): 109-119.
[3] Karn R K, Misra M, Srivastava O N. Semiconductor-septum photoelectrochemical cell for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2000, 25(5): 407-413.
[4] Alexander B D, Kulesza P J, Rutkowska I, et al. Metal oxide photoanodes for solar hydrogen production[J]. Journal of Materials Chemistry, 2008, 18(20): 2298-2303.
[5] Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570.
[6] Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation[J]. Journal of Photochemical Photobiology C, 2010, 11(4): 179-209.
[7] Mohapatra S K, Raja K S, Mahajan V. K., et al. Efficient photoelectrolysis of water using TiO2 nanotube arrays by minimizing recombination losses with organic additives[J]. Journal of Physical Chemistry C, 2008, 112(29): 11007-11012.
[8] Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces[J]. Journal of Physical Chemistry, 1996, 100(31): 13061-13078.
[9] 黄昆,韩汝琦. 半导体物理基础[M]. 科学出版社,2010.
[10] Zhang Z, Yates J T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces[J]. Chemical Reviews, 2012, 112(10): 5520-5551.
[11] Ding C, Shi J, Wang Z, Li C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces[J]. ACS Catalysis, 2017, 7(1): 675-688.
[12] Schmuki P, Bohni H, Bardwell J A. In-situ characterization of anodic silicon-oxide films by ac-impedance measurements[J]. Journal of Electrochemical Society, 1995, 142(5): 1705-1712.
[13] Nozik. J. Photoelectrochemistry: Application to solar energy conversion[J]. Annual Review of Physical Chemistry, 1978, 29: 189-222.
[14] Kegel J, Povey I M, Pemble M E. Zinc oxide for solar water splitting: A brief review of the material's challenges and associated opportunities[J]. Nano Energy, 2018, 54: 409-428.
[15] Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Review, 2014, 43(22): 7520-7535.
[16] Li R, Li C. Photocatalytic water splitting on semiconductor-based photocatalysts[J]. Advanced Catalysis, 2017, 60(60): 1-57.
[17] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Review, 2009, 38(1): 253-278.
[18] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-8.
[19] Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19): 9987-10043.
[20] Berger T, Sterrer M, Diwald O, et al. Light-induced charge separation in anatase TiO2 particles[J]. Journal of Physical Chemistry B, 2005, 109(13): 6061-6068.
[21] Gao C M, Wei T, Zhang Y Y, et al. A Photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J]. Advanced Materials, 2019: 31(8): 1806596.
[22] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.
[23] Zhang J, Xu Q, Feng Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie International Edition, 2008, 47(9): 1766-1769.
[24] Sayama K, Arakawa H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst[J]. Journal of the Chemical Society, Faraday Transactions., 1997, 93(8): 1647-1654.
[25] Li R G, Weng Y X, Zhou X, et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases[J]. Energy Environmental Science, 2015, 8(8): 2377-2382.
[26] Maeda K. Direct splitting of pure water into hydrogen and oxygen using rutile titania powder as a photocatalyst[J]. Chemical Communications, 2013, 49(75): 8404-8406.
[27] Domen K, Naito S, Soma M, et al. Photocatalytic decomposition of water-vapor on an NiO-SrTiO3 catalyst[J]. Journal of the Chemical Society, Chemical Communications, 1980, (12): 543-544.
[28] Ham Y, Hisatomi T, Goto Y, et al. Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting[J]. Journal Materials Chemistry A, 2016, 4(8): 3027-3033.
[29] Jeong H, Kim T, Kim D, et al. Hydrogen production by the photocatalytic overall water splitting on NiO/Sr3Ti2O7: Effect of preparation method[J]. International Journal of Hydrogen Energy 2006, 31(9): 1142-1146.
[30] Inoue Y, Kubokawa T, Sato K. Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water [J]. Journal of Physical Chemistry, 1991, 95(10): 4059-4063.
[31] Inoue Y, Asai Y, Sato K. Photocatalysis with tunnel structures for decomposition of water. 1. BaTi4O9, a pentagonal prism tunnel structure, and its combination with various promoters[J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(5): 797-802.
[32] Shangguan W, Yoshida A. Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxides[J]. International Journal of Hydrogen Energy, 1999, 24(5): 425-431.
[33] Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu2+ doped layered hydrogen titanate[J]. International Journal of Inorganic Materials, 2000, 2(4): 339-346.
[34] Zhu H Y, Gao X P, Lan Y, et al. Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers[J]. Journal of American Chemical Society, 2004, 126(27): 8380-8381.
[35] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. Journal of American Chemical Society, 2003, 125(10): 3082-3089.
[36] Borgarello E, Kiwi J, Gratzel M, et al. Visible-light induced water cleavage in colloidal solutions of chromium-doped titanium-dioxide particles[J]. Journal of American Chemical Society, 1982, 104(11): 2996-3002.
[37] Nishikawa T, Shinohara Y, Nakajima T, et al. Prospect of activating a photocatalyst by sunlight - a quantum chemical study of isomorphically substituted titania[J]. Chemical Letters, 1999, (11): 1133-1134.
[38] Anpo M. Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method[J]. Pure Applied Chemistry, 2000, 72(9): 1787-1792.
[39] Anpo M. Utilization of TiO2 photocatalysts in green chemistry[J]. Pure Applied Chemistry, 2000, 72(7): 1265-1270.
[40] Anpo M, Kishiguchi S, Ichihashi Y, et al. The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method[J]. Research on Chemical Intermediates, 2001, 27(4/5): 459-467.
[41] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. Journal Catalysis, 2003, 216(1/2): 505-516.
[42] Takeuchi M, Yamashita H, Matsuoka M, et al. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst[J]. Catalysis Letters, 2000, 67(2/4): 135-137.
[43] Choi W Y, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2 correlation between photoreactivity and charge-carrier recombination dynamics[J]. Journal of Physical Chemistry, 1994, 98(51): 13669-13679.
[44] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. Journal of Physical Chemistry B, 2002, 106(19): 5029-5034.
[45] Niishiro R, Kato H, Kudo A. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions[J]. Physical Chemistry Chemical Physics, 2005, 7(10): 2241-2245.
[46] Niishiro R, Konta R, Kato H, et al. Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation[J]. Journal of Physical Chemistry C, 2007, 111(46): 17420-17426.
[47] Ikeda T, Nomoto T, Eda K, et al. Photoinduced dynamics of TiO2 doped with Cr and Sb[J]. Journal of Physical Chemistry C, 2008, 112(4): 1167-1173.
[48] Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation[J]. Journal of Physical Chemistry B, 2004, 108(26): 8992-8995.
[49] Nishimoto S, Matsuda M, Miyake M. Photocatalytic activities of Rh-doped CaTiO3 under visible light irradiation[J]. Chemical Letters, 2006, 35(3): 308-309.
[50] Zhang H, Chen G, Li Y, et al. Electronic structure and photocatalytic properties of copper-doped CaTiO3[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2713-2716.
[51] Yang Y H, Chen Q Y, Yin Z L, et al. Study on the photocatalytic activity of K2La2Ti3O10 doped with zinc(Zn)[J]. Applied Surface Science, 2009, 255(20): 8419-8424.
[52] Yang Y, Chen Q, Yin Z, et al. Study on the photocatalytic activity of K2La2Ti3O10 doped with vanadium (V)[J]. Journal of Alloys and Compounds, 2009, 488(1): 364-369.
[53] Asahi R, Morikawa T, Ohwaki T,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[54] Su Y, Zhang X, Han S, et al. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition[J]. Electrochemistry Communications, 2007, 9(9): 2291-2298.
[55] Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification[J]. Chemistry Materials, 2005, 17(10): 2596-2602.
[56] Chen X Q, Su Y L, Zhang X W, et al. Fabrication of visible-light responsive S-F-codoped TiO2 nanotubes[J]. Chinese Science Bulletin, 2008, 53(13): 1983-1987.
[57] Lim M, Zhou Y, Wood B, et al. Fluorine and carbon codoped macroporous titania microspheres: Highly effective photocatalyst for the destruction of airborne styrene under visible light[J]. Journal of Physical Chemistry C, 2008, 112(49): 19655-19661.
[58] Cong Y, Chen F, Zhang J, et al. Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity[J]. Chemical Letters, 2006, 35(7): 800-801.
[59] Periyat P, Mccormack D E, Hinder S J, et al. One-pot synthesis of anionic (nitrogen) and cationic (sulfur) codoped high-temperature stable, visible light active, anatase photocatalysts[J]. Journal of Physical Chemistry C, 2009, 113(8): 3246-3253.
[60] Sheng Y, Xu Y, Jiang D, et al. Hydrothermal preparation of visible-light-driven N-Br-codoped TiO2 photocatalysts[J]. International Journal of Photoenergy, 2008: 563949.
[61] Hitoki G, Takata T, Kondo J N, et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation(λ≤500 nm)[J]. Chemical Communications, 2002, 16: 1698-1699.
[62] Ishikawa A, Takata T, Kondo J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation[J]. Journal of American Chemical Society, 2002, 124(45): 13547-13553.
[63] Maeda K, Teramura K, Takata T, et al. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109(43): 20504-20510.
[64] Maeda K, Teramura K, Domen K. Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light[J]. Journal of Catalysis, 2008, 254(2): 198-204.
[65] Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)(x)Zn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures[J]. Journal of American Chemical Society, 2004, 126(41): 13406-13413.
[66] Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions[J]. Journal of Physical Chemistry B, 2005, 109(15): 7323-7329.
[67] Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst[J]. Angewandte Chemie International Edition, 2005, 44(23): 3565-3568.
[68] Tsuji I, Kato H, Kudo A. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands[J]. Chemical Materials, 2006, 18(7): 1969-1975.
[69] Oregan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
[70] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395(6702): 583-585.
[71] Grätzel M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344.
[72] Maeda K, Eguchi M, Youngblood W J, et al. Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation[J]. Chemistry of Materials, 2008, 20(21): 6770-6778.
[73] Duonghong D, Borgarello E, Grätzel M. Dynamics of light-induced water cleavage in colloidal systems[J]. Journal of American Chemical Society, 1981, 103(16): 4685-4690.
[74] Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water[J]. International Journal of Hydrogen Energy, 2001, 26(7): 669-674.
[75] Bae E Y, Choi W Y, Park J W, et al. S. Effects of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions[J]. Journal of Physical Chemistry B, 2004, 108(37): 14093-14101.
[76] Abe R, Sayama K, Sugihara H. Effect of water/acetonitrile ratio on dye-sensitized photocatalytic H2 evolution under visible light irradiation[J]. Journal of Solar Energy Engineering - Transactions of the ASME, 2005, 127(3): 413-416.
[77] Cline E D, Adamson S E, Bernhard S. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes[J]. Inorganic Chemistry, 2008, 47(22): 10378-10388.
[78] Archer S, Weinstein J A. Charge-separated excited states in platinum(II) chromophores: Photophysics, formation, stabilization and utilization in solar energy conversion[J]. Coordination Chemistry Review, 2012, 256(21/22): 2530-2561.
[79] Luo G G, Lu H, Zhang X L, et al. The relationship between the boron dipyrromethene (Bodipy) structure and the effectiveness of homogeneous and heterogeneous solar hydrogen-generating systems as well as DSSCs[J]. Physical Chemistry Chemical Physics, 2015, 17(15): 9716-9729.
[80] Zheng B, Sabatini R P, Fu W F, et al. Light-driven generation of hydrogen: New chromophore dyads for increased activity based on Bodipy dye and Pt(diimine)(dithiolate) complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3987-E3996.
[81] Li G, Mark M F, Lv H, et al. Rhodamine-platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen[J]. Journal of American Chemical Society, 2018, 140(7): 2575-2586.
[82] Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal Catalysis, 2009, 266(2): 165-168.
[83] Chiarello G L, Selli E, Forni L. Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2[J]. Applied Catalysis B - Environmental, 2008, 84(1-2): 332-339.
[84] Ye M D, Gong J J, Lai Y K, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays[J]. Journal of the American Chemical Society, 2012, 134(38): 15720-15723.
[85] Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts[J]. Catalysis Communications, 2005, 6(10): 661-668.
[86] Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism[J]. Journal of Physical Chemistry C, 2008, 112(35): 13563-13570.
[87] Sasaki Y, Iwase A, Kato H, et al. The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation[J]. Journal of Catalysis, 2008, 259(1): 133-137.
[88] Maeda K, Saito N, Lu D, Inoue Y, et al. Photocatalytic properties of RuO2-loaded beta-Ge3N4 for overall water splitting[J]. Journal of Physical Chemistry C, 2007, 111(12): 4749-4755.
[89] Maeda K, Wang X, Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light[J]. Journal of Physical Chemistry C, 2009, 113(12): 4940-4947.
[90] Ma B J, Yang J H, Han H X, et al. Enhancement of photocatalytic water oxidation activity on IrOx-ZnO/Zn2-x-GeO4-x-3yN2y catalyst with the solid solution phase junction[J]. Journal of Physical Chemistry C, 2010, 114(29): 12818-12822.
[91] Wang D E, Li R G, Zhu J, et al. Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst[J]. Journal of Physical Chemistry C, 2012, 116(8): 5082-5089.
[92] Xiao Z, Wang Y, Huang Y C, et al. Filling the oxygen vacancies in CO3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environmental Science, 2017, 10(12): 2563-2569.
[93] Chen S, Shen S, Liu G, et al. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation[J]. Angewandte Chemie International Edition, 2015, 54(10): 3047-3051.
[94] Kim T W, Choi K S. Nanoporous BiVO4 Photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343(6174): 990-994.
[95] Liu G J, Shi J Y, Zhang F X, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting[J]. Angewandte Chemie International Edition, 2014, 53(28): 7295-7299.
[96] Liu G J, Fu P, Zhou L Y, et al. Efficient hole extraction from a hole-storage-layer-stabilized tantalum nitride photoanode for solar water splitting[J]. Chemistry - A European Journal, 2015, 21(27): 9624-9628.
[97] Liu G J, Ye S L, Yan P L, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy Environmental Science, 2016, 9(4): 1327-1334.
[98] Low J X, Dai B Z, Tong T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-Scheme TiO2 /CdS composite film photocatalyst[J]. Advanced Materials, 2019, 31(6): 1802981.
[99] Yu J D, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays[J]. Journal Materials Chemistry A, 2015, 3(44): 22218-22226.
[100] Lai Y K, Lin Z Q, Zheng D J, et al. CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells[J]. Electrochimica Acta, 2012, 79: 175-181.
[101] Wang W C, Li F, Zhang D Q, et al. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays[J]. Applied Surface Science, 2016, 362: 490-497.
[102] Xu Y F, Wu W Q, Rao H S, et al. CdS/CdSe co-sensitized TiO2 nanowire-coated hollow spheres exceeding 6% photovoltaic performance[J]. Nano Energy, 2015, 11: 621-630.
[103] Ho-Kimura S, Moniz S J A, Handoko A D, et al. Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes[J]. Journal Materials Chemistry A, 2014, 2(11): 3948-3953.
[104] Li H F, Yu H J, Quan X, et al. Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment[J]. Advanced Functional Materials, 2015, 25(20): 3074-3080.
[105] Wang Y J, Shi R, Lin J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy Environmental Science, 2011, 4(8): 2922-2929.
[106] Li Y J, Feng J, Li H J, et al. Photoelectrochemical splitting of natural seawater with alpha-Fe2O3/WO3 nanorod arrays[J]. International Journal Hydrogen Energy, 2016, 41(7): 4096-4105.
[107] Sivula K, Le Formal F, Graetzel M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach[J]. Chemical Materials, 2009, 21(13): 2862-2867.
[108] Rajendran R, Yaakob Z, Teridi M, et al. Preparation of nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting performance[J]. Materials Letters, 2014, 133: 123-126.
[109] Yu J D, Gong C, Wu Z, et al. Efficient Visible linght-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays[J]. Journal Materials Chemistry A, 2015, 3(44): 22218-22226.
[110] Wang R Y, Li X D, Wang L, et al. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability[J]. Nanoscale, 2018, 10(41): 19621-19627.
[111] Cao Z, Yin Y L, Yang W J, et al. Amorphous Co-Pi anchored on CdSe/TiO2 nanowire arrays for efficient photoelectrochemical hydrogen production[J]. Journal Materials Science, 2019, 54(4): 3284-3293.
[112] Xiang S W, Zhang Z Y, Wu Z, et al. 3D heterostructured Ti-based Bi2MoO6/Pd/TiO2 photocatalysts for high-efficiency solar light driven photoelectrocatalytic hydrogen generation[J]. ACS Applied Energy Materials, 2019, 2: 558-568.
[113] Xiang Q J, Yu J G. Graphene-based photocatalysts for hydrogen generation[J]. Journal of Physical Chemistry Letters, 2013, 4(5): 753-759.
[114] Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Review, 2012, 41(2): 782-796.
[115] Li Q, Guo B D, Yu J G, et al. Highly efficient visible-lightdriven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. Journal of American Chemical Society, 2011, 133(28): 10878-10884.
[116] Xiang Q J, Yu J G, Jaroniec M. Enhanced photocatalytic H2 production activity of graphene-modified titania nanosheets[J]. Nanoscale, 2011, 3(9): 3670-3678.
[117] Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C, 2011, 115(15): 7355-7363.
[118] Zhang J, Yu J G, Jaroniec M, et al. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance[J]. Nano Letters, 2012, 12(9): 4584-4589.
[119] Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of American Chemical Society, 2012, 134(15): 6575-6578.
[120] Zhang J, Qi L F, Ran J R, et al. Ternary NiS/ZnxCd1-xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity[J]. Advanced Energy Materials, 2014, 4(10): 1301925.
[121] Koriche N, Bouguelia A, Aider A, et al. Photocatalytic hydrogen evolution over delafossite CuAlO2[J]. International Journal of Hydrogen Energy, 2005, 30(7): 693-699.
[122] Saadi S, Bouguelia A, Trari M. Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co)[J]. Renewable Energy, 2006, 31(14): 2245-2256.
[123] Yeh T F, Syu J M, Cheng C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials, 2010, 20(14): 2255-2262.
[124] Yang J H, Yan H J, Wang X L, et al. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production[J]. Journal of Catalysis, 2012, 290: 151-157.
[125] Arai N, Saito N, Nishiyama H, et al. Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d10 electronic configuration[J]. Chemical Letters, 2006, 35(7): 796-797.
[126] Galinska A, Walendziewski J. Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents[J]. Energy & Fuels, 2005, 19(3): 1143-1147.
[127] Zielinska B, Borowiak-Palen E, Kalenczuk R J. Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors[J]. International Journal Hydrogen Energy, 2008, 33(7): 1797-1802.
[128] Wu N L, Lee M S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. International Journal Hydrogen Energy, 2004, 29(15): 1601-1605.
[129] Daskalaki V M, Kondarides D I. Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions[J]. Catalysis Today, 2009, 144(1/2): 75-80.
[130] Huang Y F, Li J L, Wei Y L, et al. Fabrication and photocatalytic property of Pt-intercalated layered perovskite niobates H1-xLaNb2-xMoxO7 (x=0-0.15)[J]. Journal of Hazardous Materials, 2009, 166(1): 103-108.
[131] Chiarello G L, Forni L, Selli E. Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2[J]. Catalysis Today, 2009, 144(1/2): 69-74.
[132] Pan C, Takata T, Nakabayashi M, et al. A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600 nm[J]. Angewandte Chemie International Edition, 2015, 54(10): 2955-2959.
[133] Maeda K, Takata T, Hara M, et al. GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. Journal of American Chemical Society, 2005, 127(23): 8286-8287.
[134] Asai R, Nemoto H, Jia Q, et al. A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting[J]. Chemical Communications, 2014, 50(19): 2543-2546.
[135] Jo W J, Kang H J, Kong K J, et al. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45): 13774-13778.
[136] Liu J, Liu Y, Liu N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974.
[137] Wang Z, Inoue Y, Hisatomi T, et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles[J]. Nature Catalysis, 2018, 1(10): 756-763.
[138] Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges[J]. Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661.
[139] Maeda K. Z-scheme water splitting using two different semiconductor photocatalysts[J]. ACS Catalysis, 2013, 3(7): 1486-1503.
[140] Abe R, Sayama K, Sugihara H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-[J]. Journal of Physical Chemistry B, 2005, 109(33): 16052-16061.
[141] Maeda K, Higashi M, Lu D, et al. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. Journal of American Chemical Society, 2010, 132(16): 5858-5868.
[142] Abe R, Higashi M, Domen K. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator[J]. ChemSusChem, 2011, 4(2): 228-237.
[143] Sasaki Y, Nemoto H, Saito K, et al. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator[J]. Journal Physical Chemistry C, 2009, 113(40): 17536-17542.
[144] Iwase A, Ng Y H, Ishiguro Y, et al. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light[J]. Journal of American Chemical Society, 2011, 133(29): 11054-11057.
[145] Wang Q, Li Y, Hisatomi T, et al. Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay[J]. Journal of Catalysis, 2015, 328: 308-315.
[146] Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-
hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials, 2016, 15(6): 611-615.
[147] Takahashi M, Tsukigi K, Uchino T, et al. Enhanced photocurrent in thin film TiO2 electrodes prepared by sol-gel method[J]. Thin Solid Films, 2001, 388(1/2): 231-236.
[148] Salvador P. Hole diffusion length in n-TiO2 single-crystals and sintered electrodes-photoelectrochemical determination and comparative-analysis[J]. Journal of Applied Physics, 1984, 55(8): 2977-2985.
[149] Halary-Wagner E, Wagner F, Hoffmann P. Titanium dioxide thin-film deposition on polymer substrate by light induced chemical vapor deposition[J]. Journal of Electrochemical Society, 2004, 151(9): C571-C576.
[150] Young K M H, Klahr B M, Zandi O, et al. Photocatalytic water oxidation with hematite electrodes[J]. Catalysis Science & Technology, 2013, 3(7): 1660-1671.
[151] Murphy A B, Barnes P R F, Randeniya L K,et al. Efficiency of solar water splitting using semiconductor electrodes[J]. International Journal of Hydrogen Energy, 2006, 31(14): 1999-2017.
[152] Katz M J, Riha S C, Jeong N C, et al. Toward solar fuels: Water splitting with sunlight and “rust”?[J]. Coordination Chemical Review, 2012, 256(21/22): 2521-2529.
[153] Sivula K, Le Formal F, Graetzel M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes[J]. Chemsuschem, 2011, 4(4): 432-449.
[154] Tilley S D, Cornuz M, Sivula K, et al. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis[J]. Angewandte Chemie International Edition, 2010, 49(36): 6405-6408.
[155] Li J, Meng F, Suri S, Ding W, et al. Photoelectrochemical performance enhanced by a nickel oxide-hematite p-n junction photoanode[J]. Chemical Communications, 2012, 48(66): 8213-8215.
[156] Walsh A, Yan Y, Huda M N, et al. Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals[J]. Chemistry Materials, 2009, 21(3): 547-551.
[157] Zhang L, Reisner E, Baumberg J J. Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation[J]. Energy Environmental Science, 2014, 7(4): 1402-1408.
[158] Park Y, Mcdonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J]. Chemical Society Review, 2013, 42(6): 2321-2337.
[159] Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy Environmental Science, 2011, 4(5): 1781-1787.
[160] Li Z S, Luo W, Zhang M L, et al. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. Energy Environmental Science, 2013, 6(2): 347-370.
[161] Seabold J A, Zhu K, Neale N R. Efficient solar photoelectrolysis by nanoporous Mo: BiVO4 through controlled electron transport[J]. Physical Chemistry Chemical Physics, 2014, 16(3): 1121-1131.
[162] Zhong D K, Choi S, Gamelin D R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4[J]. Journal of American Chemical Society, 2011, 133(45): 18370-18377.
[163] Pilli S K, Furtak T E, Brown L D, et al. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation[J]. Energy Environmental Science, 2011, 4(12): 5028-5034.
[164] Feng J, Luo W, Fang T, et al. Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles[J]. Advanced Functional Materials, 2014, 24(23): 3535-3542.
[165] Minegishi T, Nishimura N, Kubota J, et al. Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting[J]. Chemical Science, 2013, 4(3): 1120-1124.
[166] Maeda K, Higashi M, Siritanaratkul B, et al. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band[J]. Journal of American Chemical Society, 2011, 133(32): 12334-12337.
[167] Ueda K, Minegishi T, Clune J, et al. Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method[J]. Journal of American Chemical Society, 2015, 137(6): 2227-2230.
/
〈 |
|
〉 |