Sn-Cl共掺杂的锂离子正极材料Li2MnO3的结构及电化学性能研究
收稿日期: 2019-03-13
修回日期: 2019-06-28
网络出版日期: 2019-06-27
基金资助
国家重点研发计划(2016YFB0300801);国家自然科学基金重大科研仪器设备研制专项(51327902)
版权
Structures and Electrochemical Properties of Sn-Cl Co-Doped Li2MnO3 as Positive Materials for Lithium Ion Batteries
Received date: 2019-03-13
Revised date: 2019-06-28
Online published: 2019-06-27
Copyright
以乙酸盐为原料,柠檬酸为络合剂,通过溶胶-凝胶的方法制备富锂阴极材料Li2MnO3,选用草酸亚锡(SnC2O4)为锡源,用Sn4+代替Mn4+,获得不同掺杂量的材料. 适当含量的Sn4+掺杂可以提高材料的放电比容量,在低电流下获得256.3 mAh·g-1的高放电比容量,但由于Sn4+离子半径过大,不能起到稳定结构的作用,材料的倍率性能较差. 在此基础上,选用氯化亚锡(SnCl2)进行掺杂改性,在材料中同时引入Sn4+和Cl-掺杂,获得了层状结构更完整的粉末样品. 通过共掺杂改性的阴极材料可以在20 mA·g-1的电流密度,经过80圈的循环仍然保持153 mAh·g-1的放电比容量,且此时还未出现衰减现象,库仑效率保持在96%以上;在400 mA·g-1的电流密度下提供的比容量可高达116 mAh·g-1,是未掺杂样品的2倍左右.
王非 , 翟欢欢 , 王杜丹 , 李玉鹏 , 陈康华 . Sn-Cl共掺杂的锂离子正极材料Li2MnO3的结构及电化学性能研究[J]. 电化学, 2020 , 26(1) : 148 -155 . DOI: 10.13208/j.electrochem.190313
Positive material Li2MnO3 shows the highest ratio of lithium to manganese among lithium-rich materials and exhibites the theoretical capacity up to 458 mAh·g-1, making it one of the most promising cathode materials. However, this material has the intrinsic low electrical conductivity and poor cycle stability. In this paper, Li2MnO3, the lithium-rich positive material, was prepared by sol-gel method using acetate as raw material and citric acid as a complexing agent. By using SnC2O4 as a tin source, Sn4+ instead of Mn4+ was introduced to obtain the materials with different doping amounts. The resultant solution was evaporated at 80 °C under vigorous stirring to get a viscous gel. Next, the resulting gel was dried at 120 °C for 12 h. Finally, the gathered precursor was calcined at 600 °C for 6 h under an air atmosphere to obtain the target material. It was found that the proper content of Sn4+ doping could increase the specific discharge capacity of the material, obtaining as high as 256.3 mAh·g-1 at low current, but had a detrimental influence on the rate performance. On this basis, SnCl2 was used for doping modification, and the Sn4+ and Cl- co-doping into Li2MnO3 revealed a better developed layered structure with high conductivity. The intensity of super lattice peak formed between 2θ = 20° and 30° was increased by Cl-doping, indicating the ordered Li/Mn in the TM layer. Especially, this Sn-Cl co-doped Li2MnO3 sample delivered the relatively high specific discharge capacity of approximate 160 mAh·g-1 after 80 cycles at 20 mA·g-1. At the high current density of 400 mA·g-1, this material provided the specific discharge capacity of 116 mAh·g-1, which is about twice that of the undoped sample.
Key words: lithium ion battery; positive electrode material; Li2MnO3; SnC2O4; SnCl2; Sn-Cl co-doping
[1] | Kong F T, Longo R C, Yeon D H , et al. Multivalent Li-site doping of Mn oxides for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2015,119(38):21904-21912. |
[2] | Zuo Y X, Li B, Jiang N , et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018,30(16):1707255-1707255. |
[3] | Xiang Y H, Wu X . Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping[J]. Ionics, 2018,24(1):83-89. |
[4] | Wang Z Q, Wu M S, Xu B , et al. Improving the electrical conductivity and structural stability of the Li2MnO3 cathode via P doping[J]. Journal of Alloys and Compounds, 2016,658:818-823. |
[5] | Zhao W, Xiong L L, Xu Y L , et al. High performance Li2MnO3/rGO composite cathode for lithium ion batteries[J]. Journal of Power Sources, 2017,349:11-17. |
[6] | Tan X, Liu R, Xie C , et al. Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li2MnO3-δ obtained from pristine Li2MnO3[J]. Journal of Power Sources, 2018,374:134-141. |
[7] | Xin D, Xu Y L, Xiong L L , et al. Sodium substitution for partial lithium to significantly enhance thecycling stability of Li2MnO3 cathode material[J]. Journal of Power Sources, 2013,243(6):78-87. |
[8] | House R A, Jin L Y, Maitra U , et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox[J]. Energy & Environmental Science, 2018,11(4):926-932. |
[9] | Zhao Y J, Xia M H, Hu X S , et al. Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2-Mn0.8O2 Li-rich cathode materials[J]. Electrochimica Acta, 2015,174:1167-1174. |
[10] | Wang J L, Wu H L, Cui Y H , et al. A new class of ternary compound for lithium-ion battery: from composite to solid solution[J]. ACS Applied Materials & Interfaces, 2018,10(6):5125-5132. |
[11] | Chen H, Hu Q Y, Peng W J , et al. New insight into the modification of Li-rich cathode material by stannum treatment[J]. Ceramics International, 2017,43(14):10919-10926. |
[12] | Qiao Q Q, Qin L, Li G R , et al. Sn-stabilized Li-rich layered Li (Li0.17Ni0.25Mn0.58) O2 oxide as a cathode for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(34):17627-17634. |
[13] | Chen Y H, Jiao Q L, Liang W , et al. Synjournal and characterization of Li1.05Co1/3Ni1/3Mn1/3O1.95X0.05(X = Cl, Br) cathode materials for lithium-ion battery[J]. Comptes Rendus Chimie, 2013,16(9):845-849. |
[14] | Kubota K, Kaneko T, Hirayama M , et al. Direct synjournal of oxygen-deficient Li2MnO3-x for high capacity lithium battery electrodes[J]. Journal of Power Sources, 2012,216:249-255. |
[15] | Yan H J, Li B, Zhen Y , et al. First-principles study: Tuning the redox behavior of lithium-rich layered oxides by chlorine doping[J]. Journal of Physical Chemistry C, 2017,121(13):7155-7163. |
[16] | Wu S( 吴莎 ). Study on modification of Li2MnO3 cathode material for lithium ion battery by doping[D]. Hubei: Wu-han University of Technology, 2015. |
[17] | Klein A, Axmann P, Yada C , et al. Improving the cycling stability of Li2MnO3 by surface treatment[J]. Journal of Power Sources, 2015,288:302-307. |
[18] | Amalraj S F, Burlaka L, Julien C M , et al. Phase transitions in Li2MnO3 electrodes at various states-of-charge[J]. Electrochimica Acta, 2014,123(123):395-404. |
[19] | Amalraj S F, Markovsky B, Sharon D , et al. Study of the electrochemical behavior of the “inactive” Li2MnO3[J]. Electrochimica Acta, 2012,78:32-39. |
/
〈 |
|
〉 |