欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

钝化与过钝化状态下304不锈钢的点蚀行为研究

  • 沈茎 ,
  • 王子明 ,
  • 郑大江 ,
  • 宋光铃
展开
  • 1. 厦门大学材料学院,海洋材料腐蚀与防护中心,福建 厦门361005
    2. 厦门大学固体表面物理化学国家重点实验室,福建 厦门361005

收稿日期: 2019-04-18

  修回日期: 2019-06-10

  网络出版日期: 2019-05-29

基金资助

国家自然科学基金项目资助No(51671163);国家自然科学基金项目资助No(51731008)

Pitting Behaviors of Passivated and Trans-Passivated 304 Stainless Steel

  • Jing SHEN ,
  • Zi-ming WANG ,
  • Da-jiang ZHENG ,
  • Guang-ling SONG
Expand
  • 1. Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
    2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2019-04-18

  Revised date: 2019-06-10

  Online published: 2019-05-29

摘要

为了进一步了解不锈钢钝化膜与过钝化膜的性质,本文对比研究了在不同电位下极化处理后304不锈钢样品的点蚀及表面膜性质,发现空白对照组样品的点蚀电位和1.1 V过钝化处理后样品的点蚀电位相近,而0.5 V钝化处理后样品的点蚀电位较高. 扫描Kelvin探针(SKP)实验结果也验证了这一现象. 扫描电子显微镜(SEM)结果显示,空白对照组样品表面只呈现一般样品抛光后形貌;0.5 V钝化处理后的样品表面被颗粒状钝化膜所覆盖,该膜层决定了样品具有较好的耐蚀性;而1.1 V过钝化处理后的样品表面出现裂缝,导致不锈钢基体继续发生严重的局部腐蚀,可能成为过钝化膜保护性变差的主要原因.

关键词: 钝化; 过钝化; 点蚀; 不锈钢

本文引用格式

沈茎 , 王子明 , 郑大江 , 宋光铃 . 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学, 2020 , 26(6) : 808 -814 . DOI: 10.13208/j.electrochem.190418

Abstract

In order to further understand the passivation and trans-passivation behaviors of 304 stainless steels, the samples were pretreated under different polarization potentials and their corrosion behaviors were investigated. It was found that the pitting potential of the untreated sample was the same as that of the sample treated with 1.1 V trans-passivation potential, while the pitting potential of the sample treated with 0.5 V passivation treatment was the highest. This observation was further verified by the SKP results. According to SEM observations, the surface of the untreated sample preserved a polishing morphology, while the surface of the 0.5 V passivation treated sample was covered by a passivation film decorated with small corrosion particles, performing good corrosion resistance. However, cracks appeared on the surface of the 1.1 V trans-passivation treated sample, leading to severe localized corrosion of the matrix and resulting in the deterioration of the trans-passivation film.

参考文献

[1] Wang X Y( 汪轩义), Wu Y S( 吴荫顺), Zhang L( 张琳), et al. The research progress of passive film on stainless steel[J]. Materials Report(材料导报), 1999, 3: 13-14+33.
[2] Frankel G S, Sridhar N . Understanding localized corrosion[J]. Materials Today, 2008,11(10):38-44.
[3] Guillaumin V, Schmutz P, Frankel G S . Characterization of corrosion interfaces by the scanning Kelvin probe force microscopy technique[J]. Journal of the Electrochemical Society, 2001,148(5):B163-B173.
[4] Li T, Swanson O J, Frankel G S , et al. Localized corrosion behavior of a single-phase non-equimolar high entropy alloy[J]. Electrochimica Acta, 2019,306:71-84.
[5] Hakiki N E, Boudin S, Rondot B , et al. The electronic-structure of passive films formed on stainless-steels[J]. Corrosion Science, 1995,37(11):1809-1822.
[6] Santamaria M, Huerta D, Piazza S , et al. The influence of the electronic properties of passive films on the corrosion resistance of Mo-Ta alloys - a photoelectrochemical study[J]. Journal of the Electrochemical Society, 2000,147(4):1366-1375.
[7] Ferreira M G S, Belo M D, Hakiki N E , et al. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600[J]. Journal of the Brazilian Chemical Society, 2002,13(4):433-440.
[8] Xu H S, Wang L, Sun D B , et al. The passive oxide films growth on 316L stainless steel in borate buffer solution measured by real-time spectroscopic ellipsometry[J]. Applied Surface Science, 2015,351:367-373.
[9] Ye C Q( 叶陈清), Hu R G( 胡融刚), Hou R Q( 侯瑞青 ), et al. Localized corrosion behavior of sensitized 304 stainless steel by scanning reference electrode technique[J]. Journal of Electrochemistry( 电化学), 2013,19(6):507-511.
[10] Song G . Transpassivation of Fe-Cr-Ni stainless steels[J]. Corrosion Science, 2005,47(8):1953-1987.
[11] Song G L, Cao C N, Lin H C . The stability of the transpassive film on 304 stainless steel with post-treatment[J]. Corrosion Science, 1994,36(1):165-169.
[12] Nazarov A, Thierry D . Application of volta potential mapping to determine metal surface defects[J]. Electrochimica Acta, 2007,52(27):7689-7696.
[13] Yasakau K A, Salak A N, Zheludkevich M L , et al. Volta potential of oxidized aluminum studied by scanning Kelvin probe force microscopy[J]. The Journal of Physical Chemistry C, 2010,114(18):8474-8484.
[14] Stratmann M, Streckel H . On the atmospheric corrosion of metals which are covered with thin electrolyte layers - I. Verification of the experimental technique[J]. Corrosion Science, 1990,30(6):681-696.
[15] Rohwerder M, Turcu F . High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)[J]. Electrochimica Acta, 2007,53(2):290-299.
[16] Wang Y H( 安英辉), Dong C F( 董超芳), Xiao K( 肖葵 ), et al. Progress of application of Kelvin probe technique in studies on electrochemistry[J]. Corrosion Science and Protection Technology( 腐蚀科学与防护技术), 2008,20(6):440-444.
[17] Arjmand F, Adriaens A . Microelectrochemical investigation of the effect of cathodic polarisation on the corrosion resistance of 304L stainless steel in a 1 M NaCl solution[J]. International Journal of Electrochemical Science, 2012,7(9):8007-8019.
[18] Deng S F, Wang S B, Wang L Y , et al. Influence of chloride on passive film chemistry of 304 stainless steel in sulphuric acid solution by glow discharge optical emission spectrometry analysis[J]. International Journal of Electrochemical Science, 2017,12(2):1106-1117.
[19] Hakiki N E . Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel[J]. Corrosion Science, 2011,53(9):2688-2699.
[20] Ernst P, Newman R C . Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics[J]. Corrosion Science, 2002,44(5):927-941.
文章导航

/