PEO基聚合物电解质及其锂硫电池性能研究
收稿日期: 2019-04-04
修回日期: 2019-04-29
网络出版日期: 2019-05-20
基金资助
基金国家自然科学基金项目(21875196);基金国家自然科学基金项目(21761132030);基金国家自然科学基金项目(U1732121);福建省引导性计划项目(2019H0003);厦门大学大学生创新创业训练计划项目(2017X0280)
Poly(ethylene oxide) Based Polymer Electrolytes for All-Solid-State Li-S Batteries
Received date: 2019-04-04
Revised date: 2019-04-29
Online published: 2019-05-20
锂硫电池由于具有高的理论比能量引起了广泛关注,然而传统液态锂硫电池由于多硫化物的“穿梭效应”以及安全问题而限制了其应用,全固态锂硫电池可显著提高电池安全性能并有望解决多硫化物的穿梭问题. 本文采用传统的溶液浇铸法制备了具有不同的[EO]/[Li+]的PEO-LiTFSI聚合物电解质,并将其应用于锂硫电池. 研究发现,虽然[EO]/[Li+] = 8的聚合物电解质具有更高的离子电导率,但是[EO]/[Li+] = 20的电解质与金属锂负极间的界面阻抗更低,界面稳定性更好. Li|PEO-LiTFSI([EO]/[Li+]=20)|Li对称电池在60 °C,电流密度为0.1 mA·cm-2时可稳定循环超过300 h,而Li|PEO-LiTFSI ([EO]/[Li+]=8)|Li对称电池循环75 h就出现了短路现象. 基于PEO-LiTFSI([EO]/[Li+]=20)电解质的锂硫电池首圈放电比容量为934 mAh·g-1,循环16圈后放电比容量为917 mAh·g-1以上. 而基于PEO-LiTFSI ([EO]/[Li+]=8)电解质的锂硫电池,由于与锂负极较低的界面稳定性不能够正常循环,首圈就出现了严重过充现象.
李雪 , 龚正良 . PEO基聚合物电解质及其锂硫电池性能研究[J]. 电化学, 2020 , 26(3) : 338 -346 . DOI: 10.13208/j.electrochem.190403
In recent years, research on lithium-sulfur (Li-S) batteries has received much attention because the sulfur positive electrode and the lithium metal negative electrode produce a high theoretical specific capacity (lithium metal ~ 3800 mAh·g-1, sulfur ~ 1675 mAh·g-1). In addition, sulfur is considered to be the most promising cathode material for secondary lithium batteries, due to its advantages of low price and environmental friendly. However, the practical application of conventional liquid Li-S batteries is still obstructed by several critical issues, such as lithium ploysulfides shuttle effect, long-term stability of lithium metal anode with organic liquid electrolytes, and the safety concerns related to the lithium anode and liquid electrolyte. All-solid-state Li-S batteries using solid state electrolytes are considered as one of the most promising techniques to address the safety challenges of lithium ion batteries. Herein poly(ethylene oxide) (PEO)-based solid polymer electrolytes were prepared and investigated as electrolyte membranes for all-solid-state Li-S batteries. PEO/LiTFSI polymer electrolytes with different [EO]/[Li+] ratios were prepared and applied to Li-S batteries. It is found that although the PEO/LiTFSI ([EO]/[Li+] = 8) electrolyte had higher ionic conductivity, the PEO/LiTFSI ([EO]/[Li+] = 20) electrolyte resulted in lower interfacial resistance and higher interfacial stability with lithium anode. The Li|PEO/LiTFSI ([EO]/[Li+] = 20) |Li symmetric cell exhibited very stable voltage evolution without obvious erratic values or Li infiltration even being cycled for over 300 h at 60 °C and current density of 0.1 mA·cm-2. However, the PEO/LiTFSI ([EO]/[Li+] = 8) based one failed due to intern short circuit after being cycled for less than 75 h. The polymer Li-S cells comprising PEO/LiTFSI ([EO]/[Li+] = 20) electrolyte delivered a high first discharge capacity of 934 mAh·g-1 and good cycling stability with a capacity retention of 917 mAh·g-1 after 16 cycles at 60 oC. In contrast, the PEO/LiTFSI ([EO]/[Li+] = 8) electrolyte based cell was not able to be charged normally and severe overcharge occurred even at the first cycle due to the poor interfacial stability of PEO/LiTFSI ([EO]/[Li+] = 8) electrolyte with lithium anode.
[1] | Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016,45(20):5605-5634. |
[2] | Chen J H( 陈加航), Yang H J( 杨慧军), Wang J L( 王久林), et al. Current status and prospect of battery configuration in Li-S system[J]. Journal of Electrochemistryl( 电化学), 2019,25(1):3-16. |
[3] | Deng D R, Lei J, Xue F, et al. In situ preparation of a macro-chamber for S conversion reactions in lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017,5(45):23497-23505. |
[4] | Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013,52(50):13186-13200. |
[5] | Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998,394(6692):456-458. |
[6] | Zhou H, Fedkiw P S. Ionic conductivity of composite electrolytes based on poly(ethylene oxide) and fumed oxides[J]. Solid State Ionic, 2004,166(3/4):275-293. |
[7] | Ma Q( 马强), Qi X G( 戚兴国), Rong X F( 容晓飞). Novel solid polymer electrolytes for lithium-sulfur batteries[J]. Energy Storage Science and Technologyl( 储能科学与技术), 2016,5(5):713-718. |
[8] | Hu X L( 户献雷), Liang X X( 梁晓旭), Zhang M Q( 章明秋), et al. Effects of lithium salts on the properties of hyperbrandched/comb-like composite polymer electrolytes[J]. Journal of Electrochemistryl( 电化学), 2016,22(5):535-541. |
[9] | Gadjourova Z, Andreev Y G, Tunstall D P, et al. Ionic conductivity in crystalline polymer electrolytes[J]. Nature, 2001,412(6846):520-523. |
[10] | Zhang H, Liu C Y, Zheng L P, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte[J]. Electrochimica Acta, 2014,133:529-538. |
[11] | Yang Y( 杨勇). Solid state electrochemistry[M]. Beijing: Chemical Industry Press( 化学工业出版社), 2016. |
[12] | Marceau H, Kim C S, Paolella A, et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J]. Journal of Power Sources, 2016,319:247-254. |
[13] | Lei D N, Shi K, Ye H, et al. Progress and perspective of solid-state lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28:1707570. |
[14] | Judez X, Zhang H, Li C M, et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. Journal of Physical Chemistry Letters, 2017,8(9):1956-1960. |
[15] | Zhu Y W, Li J, Liu J. A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery[J]. Journal of Power Sources, 2017,351:17-25. |
[16] | Eshetu G G, Judez X, Li C M, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion’s chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society, 2018,140(31):9921-9933. |
[17] | Liang J N, Sun Q, Zhao Y, et al. Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition[J]. Journal of Materials Chemistry A, 2018,6(46):23712-23719. |
[18] | Sun C W, Liu J, Gong Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017,33:363-386. |
[19] | Polu A R, Kumar R, Rhee H W. Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries[J]. Ionics, 2015,21(1):125-132. |
[20] | Stephan A M, Nahm K S. Review on composite polymer electrolytes for lithium batteries[J]. Polymer, 2006,47(16):5952-5964. |
[21] | Carbone L, Hassoun J. A low-cost, high-energy polymer lithium-sulfur cell using a composite electrode and polyethylene oxide (PEO) electrolyte[J]. Ionics, 2016,22(12):2341-2346. |
[22] | Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998,394(6692):456-458. |
/
〈 |
|
〉 |