欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

间歇电沉积法制备纳米MnOx/Ti膜电极及其催化氧化环己烷性能

  • 周雪 ,
  • 王虹 ,
  • 尹振 ,
  • 张玉军 ,
  • 李建新
展开
  • 1. 天津工业大学材料科学与工程学院,分离膜与膜过程国家重点实验室,天津 300387
    2. 天津工业大学化学与化工学院,天津 300387
    3. 南开大学先进能源材料化学教育部重点实验室,天津 300071

收稿日期: 2019-03-12

  修回日期: 2019-04-18

  网络出版日期: 2019-04-25

基金资助

国家自然科学基金(No. 21676200,No. 21576208)、教育部创新团队发展计划(No. IRT-17R80)和天津科学支撑计划(No. 17JCYBJC19800)

Preparations of Nano-MnOx/Ti Electrocatalytic Membrane Electrode for Catalytic Oxidation of Cyclohexane Using Intermittent Electrodeposition

  • Xue ZHOU ,
  • Hong WANG ,
  • Zhen YIN ,
  • Yu-jun ZHANG ,
  • Jian-xin LI
Expand
  • 1. State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
    2. Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, P. R. China
    3. Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, P. R. China

Received date: 2019-03-12

  Revised date: 2019-04-18

  Online published: 2019-04-25

摘要

高选择性氧化环己烷(CHA)制备环己酮和环己醇(KA油)具有重要的工业价值和应用前景. 本文提出采用间歇电沉积法制备纳米MnOx催化剂负载多孔管式钛膜,构建电催化膜反应器(ECMR)催化氧化环己烷制备环己醇和环己酮. 利用场发射扫描电子显微镜(FESEM)、X射线衍射仪(XRD)和电化学工作站等表征手段对催化剂的结构与性能进行表征. 结果表明,间歇电沉积法制备的催化剂为纳米花球状γ-MnO2. 与基体钛膜相比,MnOx/Ti膜电极具有更优的电化学性能和传质性能. 此外,以MnOx/Ti电催化膜为阳极,不锈钢网为阴极构建ECMR. 当环己烷初始浓度30 mmol·L-1、反应温度30oC、停留时间34.3 min、电流密度2.3 mA·cm-2等条件下,ECMR环己烷转化率达25.6%,KA油总选择性高于99%. 同时,ECMR重复使用8次后表现较高催化稳定性.

本文引用格式

周雪 , 王虹 , 尹振 , 张玉军 , 李建新 . 间歇电沉积法制备纳米MnOx/Ti膜电极及其催化氧化环己烷性能[J]. 电化学, 2020 , 26(3) : 397 -405 . DOI: 10.13208/j.electrochem.190312

Abstract

Cyclohexanone and cyclohexanol (KA oil) obtained from highly selective oxidation of cyclohexane (CHA) show important industrial value and application prospects. In this work, the intermittent electrodeposition was developed to prepare nano-MnOx catalyst loading porous tubular titanium membrane electrode (MnOx/Ti), which was employed to constitute an electro-catalytic membrane reactor (ECMR) for the oxidation of cyclohexane to produce cyclohexanol and cyclohexanone. The surface morphology, crystal structure and electrochemical property of the catalysts were characterized by FESEM, XRD and electrochemical workstation, respectively. The results show that the catalyst prepared by the intermittent electrodeposition displayed nano-flower-like γ-MnO2. Compared with titanium membrane, the MnOx/Ti electrocatalytic membrane exhibited better electrochemical performance and mass transfer performance. Furthermore, the ECMR was constructed by using the MnOx/Ti electrocatalytic membrane as the anode and the stainless steel mesh as the cathode. When the initial concentration of cyclohexane was 30 mmol·L-1, the reaction temperature was 30oC, the residence time was 34.3 min and the current density was 2.3 mA·cm-2. The cyclohexane conversion rate reached 25.6% and the total selectivity of KA oil exceeded 99%. Simultaneously, the ECMR with MnOx/Ti electrode showed a good stability during the oxidation of cyclohexane.

参考文献

[1] Alshehri A A, Alhanash A M, Eissa M, et al. New catalysts with dual-functionality for cyclohexane selective oxidation[J]. Applied Catalysis A General, 2018,554:71-79.
[2] Yu A P, Chen Z W, Maric R, et al. Electrochemical supercapacitors for energy storage and delivery: advanced materials, technologies and applications[J]. Applied Energy, 2015,153(SI):1-2.
[3] Loncarevic D, Krstic J, Dostanic J, et al. Cyclohexane oxidation and cyclohexyl hydroperoxide decomposition by poly(4-vinylpyridine-co-divinylbenzene) supported cobalt and chromium complexes[J]. Chemical Engineering Journal, 2010,157(1):181-188.
[4] Makgwane P R, Ray S S. Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst[J]. Catalysis Communication 2014,54:118-123.
[5] Selvamani a, Selvaraj M, Gurulakshmi M, et al. Selective oxidation of cyclohexane using Ce1-xMnxO2 nanocatalysts[J]. Journal of Nanoscience & Nanotechnology, 2014,14(4):2864-2870.
[6] Zabihi M, Khorasheh F, Shayegan J. Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air[J]. RSC Advances, 2014,5(7):5107-5122.
[7] Wang L B, Zhao S T, Liu C X, et al. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals[J]. Nano Letters, 2015,15(5):2875-2880.
[8] Yu H, Peng F, Tan J, et al. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes[J]. Angewandte Chemie International Edition, 2011,50(17):3978-3982.
[9] Yang X X, Yu H, Peng F, et al. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane[J]. ChemSusChem, 2012,5(7):1213-1217.
[10] Li J, Shi Y, Xu L, et al. Selective oxidation of cyclohexane over transition-metal-incorporated HMS in a solvent-free system[J]. Industrial & Engineering Chemistry Research, 2010,49(11):5392-5399.
[11] Fei F, Chen L, Zhao C L, et al. Distribution of chlorpyrifos in rice paddy environment and its potential dietary risk[J]. Journal of Environmental Sciences, 2015,35(9):101-107.
[12] Zhong W Z, Qiao T, Dai J, et al. Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclohexane[J]. Journal of Catalysis, 2015,330:208-221.
[13] Xu L X, He C H, Zhu M Q, et al. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation[J]. Catalysis Letters, 2007,118(3/4):248-253.
[14] Mishra G S, Sinha S. Oxidation of cyclohexane with molecular oxygen catalyzed by SiO2 supported palladium catalysts[J]. Catalysis Letters, 2008,125(1/2):139-144.
[15] Li L( 李乐), Wang H( 王虹), Ma R H( 马荣花), et al. Preparation of nano-manganite loaded titanium electocatalytic membrane electrode for phenolic wastewater treatment[J]. Journal of Electrochemistryl( 电化学), 2018,24(4):309-318.
[16] Fang X, Yin Z, Wang H, et al. Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor[J]. Journal of Catalysis, 2015,329:187-194.
[17] Xiao Z, Zhan W C, Guo Y, et al. The synjournal of Codoped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen[J]. Chinese Journal of Catalysis, 2016,37(2):273-280.
[18] Hereijgers B P C, Weckhuysen B M. Aerobic oxidation of cyclohexane by gold-based catalysts: new mechanistic insight by thorough product analysis[J]. Journal of Catalysis, 2013,270(1):16-25.
[19] Liu H U, Cui Z F. Optimization of operating conditions for glucose oxidation in an enzymatic membrane bioreactor[J]. Journal of Membrane Science, 2007. 302(1):180-187.
[20] Yoshida J I, Kim H, Nagaki A. Green and sustainable chemical synjournal using flow microreactors[J]. ChemSus-Chem, 2011,4(3):331-340.
[21] Qi Y B, Zhang Y J, Yin Z, et al. Effect of solvent on conversion and selectivity during the selective oxidation of cyclohexane by nano-5/Ti membrane electrode[J]. Journal of The Electrochemical Society, 2018,165(9):460-465.
[22] Clarke C J, Browning G J, Donne S W. An RDE and RRDE study into the electrodeposition of manganese dioxide[J]. Electrochimica Acta, 2006,51(26):5773-5784.
[23] Huang Y, Yan H J, Tong Y J. Electrocatalytic determination of reduced glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode[J]. Journal of Electroanalytical Chemistry, 2015,743:25-30.
[24] Wu M Z, Zhan W C, Guo Y, et al. Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides: Effect of the calcination temperature[J]. Chinese Journal of Catalysis, 2016,37(1):184-192.
[25] Wu M Z, Zhan W C, Guo Y L, et al. An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen[J]. Applied Catalysis A - General, 2016,523:97-106.
文章导航

/