欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

基于热控电极的电致化学发光传感器的研究进展

  • 张惠芳 ,
  • 陈毅挺 ,
  • 罗 芳 ,
  • 林振宇 ,
  • 陈国南
展开
  • 1. 赣南师范大学化学化工学院,江西 赣州 341000; 2. 福州大学化学学院,食品安全与生物分析教育部重点实验室,福建 福州 350116; 3. 闽江学院化学与化学工程系,福建 福州 350108

收稿日期: 2018-11-20

  修回日期: 2019-01-07

  网络出版日期: 2019-04-24

基金资助

国家自然科学基金项目(No. 21775026)资助

Recent Progress of Electrochemiluminescence Sensors Based on Electrically Heated Electrode

  • ZHANG Hui-fang ,
  • CHEN Yi-ting ,
  • LUO Fang ,
  • LIN Zhen-yu ,
  • CHEN Guo-nan
Expand
  • 1. Gannan Normal University, College of Chemistry and Chemical Engineering, Ganzhou 341000, China; 2. Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, and Department of Chemistry, Fuzhou University, Fuzhou 350108, China; 3. Chemistry and Chemical Engineering Department of Minjiang University, Fuzhou, Fujian 350108, China

Received date: 2018-11-20

  Revised date: 2019-01-07

  Online published: 2019-04-24

摘要

电致化学发光(ECL)检测技术因其具有无需激发光源、仪器简单、灵敏度高、选择性好等特点,被广泛应用于环境分析、生物分析等领域. 温度是影响ECL的主要因素之一,在传统的ECL传感器中大多是通过溶液整体加热的方法来控制温度,这种方法操作繁琐,且溶液中的热不稳定性物质及易挥发性物质容易受到影响,因此电极很少工作在最适宜的温度下. 热控电极技术可以只提高电极表面温度,而维持溶液的整体温度不变,使用起来具有很好的便利性. 作者课题组首次将热控电极引入到ECL传感器的构建中,由于电极表面和溶液之间存在一定的温度梯度,因此可以引发强制对流,从而加快物质的扩散和对流速率;电极表面温度的升高还可以进一步提高电极表面物质的电化学反应速率,这两方面的共同作用提高了ECL检测的灵敏度. 同时,利用热控电极可以解决整体加热所引起的背景信号升高,挥发性、热不稳定性物质易受温度影响等问题,而且通过电极加热的方法可去除电极表面的污染物,从而提高ECL检测的重现性. 本文综述了近年来基于热控电极技术的ECL传感器的研究进展,主要介绍了热控电极的加热方式、电极种类以及热控电极在ECL中的应用等,并分析了该技术在实际应用中面临的主要问题,对该技术未来的发展趋势进行了展望.

本文引用格式

张惠芳 , 陈毅挺 , 罗 芳 , 林振宇 , 陈国南 . 基于热控电极的电致化学发光传感器的研究进展[J]. 电化学, 2019 , 25(2) : 172 -184 . DOI: 10.13208/j.electrochem.181043

Abstract

Electrochemiluminescence (ECL) has broad application in the fields of environmental monitoring and biological analysis due to its intrinsic advantages such as excellent versatility, good detection sensitivity, and high specificity. The intensity of ECL can be influenced by temperature variation in the ECL quantum efficiency and the rate of electrochemical reaction. However, traditional temperature control is commonly realized through bulk solutions heating, which is complicated and unfavorable for detection when the volatile and thermally unstable materials existed. In order to address these problems, electrically heated electrodes are used to adjust the temperature desired. The major character of this technique lies in the heating electrode up, while leaving the bulk solution at ambient temperature, which promotes the performance of the sensor by affecting the thermodynamic and kinetic parameters of the reaction, and further improves the sensitivity of the ECL detection. Moreover, the background signal, and the volatile and thermally unstable substances that are susceptible to temperature will not be affected. The contamination on the surface of the electrode can also be easily removed by electrical heating, thereby the reproducibility of ECL sensor is improved. As a whole, this article aims at reviewing the research progress of ECL sensors based on the electrically heated electrode in the analysis and detection of target molecules, summing up the main problems in the practical determination, and providing an outlook in the future development trend of this technology.

参考文献

[1]  Miao W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviews, 2008, 108(7): 2506-2553.
[2]  Li L L, Chen Y, Zhu J J. Recent advances in electrochemiluminescence analysis[J]. Analytical Chemistry, 2017, 89(1): 358-371.
[3]  Wang Y F(王艳凤), Luo D(罗荻), Shan D L(陕多亮), et al. Cathodic electrochemiluminescence of meso-tetra(4-sulfophenyl)porphyrin/potassium peroxydisulfate system[J].
Journal of Electrochemistry (电化学), 2017, 23(3): 307-315.
[4]  Zhou Z Y(周镇宇), Xu L R(许林茹), Su B(苏彬). Electrochemiluminescence imaging focusing: Array analysis and visualization of latent fingerprints[J]. Journal of Electrochemistry(电化学), 2014, 20(6): 506-514.
[5]  Wallace W L, Bard A J. Electrogenerated chemiluminescence. 35. Temperature dependence of the ECL efficiency of Ru(bpy)32+ in acetonitrile and evidence for very high excited state yields from electron transfer reactions[J]. Journal of Physical Chemistry, 1979, 83(10): 1350-1357.
[6]  Wang X F, Zhou Y, Xu J J, et al. Signal-on electrochemiluminescence biosensors based on CdS-Carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine[J]. Advanced Functional Materials, 2009, 19(9): 1444-1450.
[7]  Lin Z Y, Chen J H, Chen G N. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode[J]. Electrochimica Acta, 2008, 53(5): 2396-
2401.
[8]  Wang H Y, Zhang F Q, Tan Z A, et al. Greatly enhanced electrochemiluminescence of CdS nanocrystals upon heating in the presence of ammonia[J]. Electrochemistry Communications, 2010, 12(5): 650-652.
[9]  Li H D, Sentic M, Ravaine V, et al. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films[J]. Physical Chemistry Chemical Physics, 2016, 18(48): 32697-32702.
[10]  Harima Y, Aoyagui S. Electrode potential relaxation following a rapid change of temperature[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 69(3): 419-422.
[11]  Ishikawa T, Okamoto G. Potentiostatic response of passive metals to the rate of temperature change[J]. Electrochimica Acta, 1964, 9(10): 1259-1268.
[12]  Flechsig G U, Korbout O, Hocevar S B, et al. Electrically heated bismuth-film electrode for voltammetric stripping measurements of trace metals[J]. Electroanalysis, 2002, 14(3): 192-196.
[13]  Lau C, Flechsig G U, Gründler P, et al. Electrochemistry of nicotinamide adenine dinucleotide (reduced) at heated platinum electrodes[J]. Analytica Chimica Acta, 2005, 554(1): 74-78.
[14]  Zhang J J, Liu Y, Hu L H, et al. “Proof-of-principle” concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode[J]. Chemical Communications, 2011, 47(23): 6551-6553.
[15]  Shi J J, He T T, Jiang F, et al. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-
metal labels for rapid detection of MMP-9 and IL-6[J]. Biosensors and Bioelectronics, 2014, 55: 51-56.
[16]  Wei H, Sun J J, Guo L, et al. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode[J]. Chemical Communications, 2009, 20: 2842-2844.
[17]  Wu S H, Zhang B, Wang F F, et al. Heating enhanced sensitive and selective electrochemical detection of Hg2+ based on T-Hg2+-T structure and exonuclease III-assisted target recycling amplification strategy at heated gold disk electrode[J]. Biosensors and Bioelectronics, 2018, 104: 145-151.
[18]  Jasinski M, Kirbs A, Schmehl M, et al. Heated mercury film electrode for anodic stripping voltammetry[J]. Electrochemistry Communications, 1999, 1(1): 26-28.
[19]  Compton R G, Coles B A, Marken F. Microwave activation of electrochemical processes at microelectrodes[J]. Chemical Communications, 1998, 23: 2595-2596.
[20]  Ke J H, Tseng H J, Hsu C T, et al. Flow injection analysis of ascorbic acid based on its thermoelectrochemistry at disposable screen-printed carbon electrodes[J]. Sensors and Actuators B: Chemical, 2008, 130(2): 614-619.
[21]  Qiu F L, Compton R G, Coles B A, et al. Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation[J]. Journal of Electroanalytical Chemistry, 2000, 492(2): 150-155.
[22]  Gründler P. Theory and practice of sensors with hot-wire electrodes[J]. Fresenius Journal of Analytical Chemistry, 1998, 362(2): 180-183.
[23]  Qu X L(瞿晓龙), Zhang Z F(张正富). Application of microwave heating in preparation of lithium batteries cathode materials[J]. Journal of Materials Science & Engineering (材料科学与工程学报), 2015, 33(5): 776-780.
[24]  Compton R G, A. Coles B, Marken F. Microwave activation of electrochemical processes at microelectrodes[J]. Chemical Communications, 1998, 23: 2595-2596.
[25]  Akkermans R P, Roberts S L, Marken F, et al. Methylene green voltammetry in aqueous solution: Studies using thermal, microwave, laser, or ultrasonic activation at platinum electrodes[J]. The Journal of Physical Chemistry B, 1999, 103(45): 9987-9995.
[26]  Tsai Y C, Coles B A, Compton R G, et al. Microwave activation of electrochemical processes: Enhanced electrodehalogenation in organic solvent media[J]. Journal of the American Chemical Society, 2002, 124(33): 9784-9788.
[27]  Kumar Sur U, Marken F, Coles B A, et al. Microwave activation in ionic liquids induces high temperature-high speed electrochemical processes[J]. Chemical Communications, 2004, 24: 2816-2817.
[28]  Shafir A. Laser beam heating method and apparatus: U.S. Patent 5,298,719[P]. 1994-3-29.
[29]  Valdes J L, Miller B. Thermal modulation of rotating-disk electrodes-steady-state response[J]. Journal of Physical Chemistry, 1988, 92(2): 525-532.
[30]  Hinoue T, Ikeda E, Watariguchi S, et al. Thermal modulation voltammetry with laser heating at an aqueous|nitrobenzene solution microinterface: Determination of the standard entropy changes of transfer for tetraalkylammonium ions[J]. Analytical Chemistry, 2007, 79(1): 291-298.
[31]  Hartshorn L. Radio-frequency heating[M]. George Allen & Unwin Ltd., 1949.
[32]  Li Y L(李玉林), Jiao Y(焦阳), Wang Y F(王易芬). Application of radio frequency heating in food industry[J]. Food & Machinery (食品与机械), 2017, 33(12): 197-202.
[33]  Gründler P, Degenring D. Temperature calculation for pulse-heated hot-wire electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 512(1/2): 74-82.
[34]  Gründler P, Flechsig G U. Principles and analytical applications of heated electrodes[J]. Microchimica Acta, 2006, 154(3): 175-189.
[35]  Gründler P, Kirbs A, Zerihun T. Hot-wire electrodes: Voltammetry above the boiling point[J]. Analyst, 1996, 121(12): 1805-1810.
[36]  Zerihun T, Gründler P. Electrically heated cylindrical microelectrodes. The reduction of dissolved oxygen on Pt[J]. Cheminform, 1996, 27(39): 243-248.
[37]  Beckmann A, Schneider A, Gründler P. Electrically heated cylindrical microelectrodes. Electrochemical measurements in THF[J]. Electrochemistry Communications, 1999, 1(1): 46-49.
[38]  Gabrielli C, Keddam M, Lizee J F. A temperature perturbation method for electrochemical kinetics investigations[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 148(2): 293-297.
[39]  Gründler P, Zerihun T, Möller A, et al. A simple method for heating micro electrodes in-situ[J]. Journal of Electroanalytical Chemistry, 1993, 360(1/2): 309-314.
[40]  Baranski A S. Hot microelectrodes[J]. Analytical Chemistry, 2002, 74(6): 1294-1301.
[41]  Gründler P, Flechsig G U. Deposition and stripping at heated microelectrodes. Arsenic(V) at a gold electrode[J]. Electrochimica Acta, 1998, 43(23): 3451-3458.
[42]  Voss T, Gründler P, Brett C, et al. Electrochemical behaviour of cytochrome c at electrically heated microelectrodes[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 19(1/2): 127-133.
[43]  Walter A, Langschwager F, Marken F, et al. Nanostructured heated gold electrodes for DNA hybridization detection using enzyme labels[J]. Sensors and Actuators B: Chemical, 2016, 233: 502-509.
[44]  Wu S H, Tang Y, Chen L, et al. Amplified electrochemical hydrogen peroxide reduction based on hemin/G-quadruplex DNAzyme as electrocatalyst at gold particles modified heated copper disk electrode[J]. Biosensors and Bioelectronics, 2015, 73: 41-46.
[45]  Wang J, Gründler P, Flechsig G U, et al. Stripping analysis of nucleic acids at a heated carbon paste electrode[J]. Analytical Chemistry, 2000, 72(16): 3752-3756.
[46]  Wang J, Flechsig G U, Erdem A, et al. Label-free DNA hybridization based on coupling of a heated carbon paste electrode with magnetic separations[J]. Electroanalysis, 2004, 16(11): 928-931.
[47]  Zhang J J, Liu Y, Hu L H, et al. “Proof-of-principle” concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode[J]. Chemical Communications, 2011, 47(23): 6551-6553.
[48]  Jiang F, Zhang J J, Zhang J R, et al. Ultrasensitive immunoassay based on dual signal amplification of the electrically heated carbon electrode and quantum dots functionalized labels for the detection of matrix metalloproteinase-9[J]. Analyst, 2013, 138(7): 1962-1965.
[49]  Lou Y B, He T T, Jiang F, et al. A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels[J]. Talanta, 2014, 122: 135-139.
[50]  Sun J J, Guo L, Zhang D F, et al. Heated graphite cylinder electrodes[J]. Electrochemistry Communications, 2007, 9(2): 283-288.
[51]  Cheng H, Jiang S. Preparation and application of graphene modified heated glassy carbon electrode[C]//2nd International Conference on Civil, Materials and Environmental Sciences. Atlantis Press, 2015.
[52]  Wu S H, Nie F H, Chen Q Z, et al. Highly sensitive detection of silybin based on adsorptive stripping analysis at single-sided heated screen-printed carbon electrodes modified with multi-walled carbon nanotubes with direct current heating[J]. Analytica Chimica Acta, 2011, 687(1): 43-49.
[53]  Kale G M. Solid-state mixed-potential sensor employing tin-doped indium oxide sensing electrode and scandium oxide-stabilised zirconia electrolyte[J]. Advanced Powder Technology, 2009, 20(5): 426-431.
[54]  Yin Z, Zhang J, Jiang L P, et al. Thermosensitive behavior of poly(N-isopropylacrylamide) and release of incorporated hemoglobin[J]. The Journal of Physical Chemistry C, 2009, 113(36): 16104-16109.
[55]  Chen Y T, Jiang Y Y, Lin Z Y, et al. Fabrication of an electrically heated indium-tin-oxide electrode for electrochemiluminescent detection system[J]. Analyst, 2009, 134
(4): 731-737.
[56]  Lin Z Y, Sun J J, Chen J H, et al. A new electrochemiluminescent detection system equipped with an electrically controlled heating cylindrical microelectrode[J]. Analytica Chimica Acta, 2006, 564(2): 226-230.
[57]  Nasir M, Nawaz M H, Latif U, et al. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays[J]. Microchimica Acta, 2017, 184(2): 323-342.
[58]  Yang H F, Zhang Y S, Qiu B, et al. The electrochemiluminescent behavior of nickel phthalocyanine (NiTSPc)/H2O2 system on a heated ITO electrode[J]. Chinese Chemical Letters, 2012, 23(6): 711-714.
[59]  Ye R H, Chen X P, Qiu B, et al. Electrochemiluminescence behavior of Ru(bpy)32+/carbofuran system on an electrically heated microelectrode chip[J]. Chinese Journal of Chemistry, 2011, 29(10): 2148-2152.
[60]  Lin Z Y, Sun J J, Chen J H, et al. Enhanced electrochemiluminescent of lucigenin at an electrically heated cylindrical microelectrode[J]. Electrochemistry Communications, 2007, 9(2): 269-274.
[61]  Lin Z, Sun J, Chen J, et al. The electrochemiluminescent behavior of luminol on an electrically heating controlled microelectrode at cathodic potential[J]. Electrochimica Acta, 2007, 53(4): 1708-1712.
[62] Lin Z, Sun J, Chen J, et al. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase[J]. Analytical Chemistry, 2008, 80(8): 2826-2831.
[63]  Chen Y T, Jiang Y Y, Lin Z Y, et al. An electrochemiluminescent detector based on multi-wall-carbon-nanotube/Nafion/Ru(bpy)32+ composite film modified heated electrode[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(4): 2303-2309.
[64]  Chen L C, Chi Y W, Zheng X X, et al. Heated indium tin oxide cell for studying ionic liquid-mediated electrochemiluminescence[J]. Analytical Chemistry, 2009, 81(6): 2394-2398.
[65]  Chen Y T, Chen X, Lin Z Y, et al. An electrically heated ionic-liquid/multi-wall carbon nanotube composite electrode and its application to electrochemiluminescent detection of ascorbic acid[J]. Electrochemistry Communications, 2009, 11(6): 1142-1145.
[66]  Lin Z Y, Chen X P, Chen H Q, et al. Electrochemiluminescent behavior of N6-isopentenyl-adenine/Ru(bpy)32+ system on an electrically heated ionic liquid/carbon paste electrode[J]. Electrochemistry Communications, 2009, 11(10): 2056-2059.
[67]  Chen Y T, Li Y X, Jiang L Q, et al. Fabrication of a heated electrode modified with a thiol-functionalized ionic liquid for electrochemical/electrochemiluminescence sensors[J]. RSC Advances, 2016, 6(46): 39955-39961.
[68]  Chen Y T, Qiu B, Jiang Y Y, et al. Detection of hypoxanthine based on the electrochemiluminescent of 6-(4-methoxyphenyl)-2-methylimidazo[1, 2-a] pyrazin-3(7H)-one on the electrically heated indium-tin-oxide electrode[J]. Electrochemistry Communications, 2009, 11(11): 2093-2096.
[69]  Lin Z Y, Wang W Z, Jiang Y Y, et al. Detection of N-6-methyladenosine in urine samples by electrochemiluminescence using a heated ITO electrode[J]. Electrochimica Acta, 2010, 56(2): 644-648.
[70]  Jacobsen M, Flechsig G U. Hybridization detection of osmium tetroxide bipyridine-labeled DNA and RNA on heated gold wire electrodes[J]. Electroanalysis, 2013, 25(2): 373-379.
[71]  Flechsig G U, Peter J, Hartwich G, et al. DNA hybridization detection at heated electrodes[J]. Langmuir, 2005, 21(17): 7848-7853.
[72]  Zhang H F, Zhuo Z S, Chen L J, et al. Enhanced performance of a hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ochratoxin A using an electrically heated indium tin oxide electrode[J]. Electrochemistry Communications, 2018, 88: 75-78.
[73]  Chen Y, Lin Z, Chen J, et al. New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)32+/multi-wall-carbon-
nanotube paste electrode[J]. Journal of Chromatography A, 2007, 1172(1): 84-91.
[74]  Chen Y T, Lin Z Y, Sun J J, et al. A new electrochemiluminescent detection system equipped with an electrically heated carbon paste electrode for CE[J]. Electrophoresis, 2007, 28(18): 3250-3259.
文章导航

/