欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

间接电氧化2-丁酮制备α-羟基缩酮的研究

  • 黄海清 ,
  • 缪烨 ,
  • 张新胜
展开
  • 华东理工大学化学工程国家重点实验室,上海 200237

收稿日期: 2019-02-25

  修回日期: 2019-04-01

  网络出版日期: 2019-04-23

基金资助

国家重点研发计划项目(No. 2017YFB0307502)资助

Preparation of α-Hydroxylated Acetal from 2-Butanone by Indirect Electrooxidation

  • Hai-qing HUANG ,
  • Ye MIAO ,
  • Xin-sheng ZHANG
Expand
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

Received date: 2019-02-25

  Revised date: 2019-04-01

  Online published: 2019-04-23

摘要

在板框式循环电解槽中,以KOH为电解质,KI为催化剂,石墨电极分别为阳极和阴极,研究电化学间接氧化2-丁酮合成乙偶姻中间体α-羟基缩酮,讨论电流密度、极板间电解液流速、电解液中2-丁酮浓度、电解温度以及通电量等电解条件对中间体收率和电流效率的影响,经优选工艺条件为:电流密度40 mA·cm-2,流速6.4 cm·s-1,2-丁酮浓度1.75 mol·L-1,电解温度30,通电量为1.5 F·moL-1时,中间体收率可达78.9%,电流效率40.1%. 循环伏安测试结果表明,电解时碘离子在阳极氧化生成碘单质,甲醇在阴极还原生成甲氧基负离子,原料2-丁酮与电解产物反应,并最终生成乙偶姻中间体.

本文引用格式

黄海清 , 缪烨 , 张新胜 . 间接电氧化2-丁酮制备α-羟基缩酮的研究[J]. 电化学, 2020 , 26(3) : 389 -396 . DOI: 10.13208/j.electrochem.190222

Abstract

Acetoin (3-hydroxy-2-butanone) is an important food spice. As a platform compound, it is widely used in medicine, tobacco, cosmetics, chemical material and other industries. In this paper, α-hydroxylated acetal, an intermediate of acetoin, was prepared from 2-butanone by indirect electrooxidation in the plate and frame electrolytic cell, in which graphite plates were used as both an anode and a cathode, while KOH as an electrolyte and KI as a catalyst. Acetoin could be prepared by hydrolysis in acidic aqueous solution from acetoin intermediate. The effects of current density, electrolyte flow rate between the plates, 2-butanone concentration and electrolysis temperature on the yield and efficiency of acetoin intermediate were investigated. Under the optimized conditions, namely, the current density of 40 mA·cm-2, the flow rate of 6.4 cm·s-1, the 2-butanone concentration of 1.75 mol·L-1, the electrolysis temperature of 30 °C, and the passed charge of 1.5 F·mol-1, the yield and current efficiency of the acetoin intermediate could reach 78.9% and 40.1%, respectively. The cyclic voltammetric tests showed that during electrolysis, iodine ions were oxidized to iodine on the anode, while methanol was reduced to methoxy anion on the cathode. 2-butanone reacted with the electrolytic products, and eventually, the acetoin intermediate was formed.

参考文献

[1] Han L( 韩丽), Zhao X Y( 赵祥颖), Liu J J( 刘建军). Progress in research of acetoin[J]. Food and Fermentation Industriesl( 食品与发酵工业), 2006,32(10):116-118.
[2] Chang A X( 常爱霞), Jia X H( 贾兴华), Hao T L( 郝廷亮), et al. Identification and analysis of volatile aroma and flavor constituents of flue-cured tobacco with special flavoring aroma[J]. Chinese Tobacco Sciencel( 中国烟草科学), 2002,23(1):1-5.
[3] Xiao X H( 肖旭辉). Synjournal of antibiotics lenampicillium hydrochloride[J]. Fine Chemical Intermediatesl( 精细化工中间体), 2004,34(6):35-36.
[4] Hu L Y( 胡来月), Feng Y S( 冯乙巳), Zhu Y C( 朱玉川). Synjournal of 4,5-dimethyl-1,3-dioxolen-2-one[J]. Fine Chemicalsl( 精细化工), 2008,25(6):600-602.
[5] Ji X J( 纪晓俊), Huang H( 黄和), Du J( 杜军), et al. Advance in production of 3-hydroxybutanone and its application[J]. Modern Chemical Industryl( 现代化工), 2008,28(4):18-22.
[6] Zhu Z Y( 朱卓越), Huang S F( 黄淑芳), Yang H W( 杨华武), et al. Synjournal of acetoin by oxidation with sodium bromate[J]. Flavour Fragrance Cosmeticsl( 香料香精化妆品), 2009,4:11-13.
[7] Zhang X Z( 张小舟), Zeng C Y( 曾崇余), Ren X Q( 任晓乾). Preparation of acetoin from 2,3-butanedione by catalytic reduction method[J]. Journal of Nanjing University of Chemical Technologyl( 南京工业大学学报), 2001,23(4):54-57.
[8] Hilmi A, Belgsir E M, Leger J M, et al. Electrocatalytic oxidation of aliphatic diols Part V. Electro-oxidation of butanediols on platinum based electrodes[J]. Journal of Ele-ctroanalytical Chemistry, 1997,435(1/2):69-75.
[9] Faveri D D, Torre P, Molinari F, et al. Carbon material balances and bioenergetics of 2,3-butanediol bio-oxidation by Acetobacter hansenii[J]. Enzyme and Microbial Technology, 2003,33(5):708-719.
[10] Gao C, Zhang L J, Xie Y J, et al. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase[J]. Bioresource Technology, 2013,137:111-115.
[11] Zhang Y J, Li S B, Liu L M, et al. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens[J]. Bioresource Technology, 2013,130(1):256-260.
[12] Wang M, Fu J, Zhang X Y, et al. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin[J]. Biotechnology Letters, 2012,34(10):1877-1885.
[13] Niu D F( 钮东方), Yu C K( 俞程凯), Zhang X S( 张新胜). Preparation of benzoquinone from phenol by electrooxidation[J]. Journal of Electrochemistryl( 电化学), 2013,19(5):477-481.
[14] Wu L L( 吴玲玲), Zhu Y H( 朱英红), Li S S( 李姗姗), et al. Study on the direct electro-oxidation of anisaldehyde[J]. Journal of Electrochemistryl( 电化学), 2011,17(2):227-230
[15] Elinson M N, Feducovich S K, Dorofeev A S, et al. Indirect electrochemical oxidation of aryl alkyl ketones mediated by NaI-NaOH system: facile and effective way to α-hydroxyketals[J]. Tetrahedron, 2000,56(51):9999-10003.
[16] Shono T, Matsumura Y, Inoue K, et al. Electroorganic chemistry. Part 93. Electro-organic transformation of aldehydes and ketones to α-hydroxylated acetals utilizing mediators and some synthetic uses of the products[J]. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 1986,1:73-77.
[17] Romano P, Suzzi G. Acetoin production in saccharomyces cerevisiae wine yeasts[J]. FEMS Microbiology Letters, 1993,118(3):23-26.
文章导航

/