欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

新型单丝电极交流探头在3.5wt.% NaCl中的电化学响应规律研究

  • 邹振文 ,
  • 郑大江 ,
  • 王子明 ,
  • 宋光铃
展开
  • 1. 厦门大学材料学院,海洋材料腐蚀与防护中心,福建 厦门 361005
    2. 厦门大学固体表面物理化学国家重点实验室,福建 厦门 361005
* Tel: (86-592)2186802, E-mail: guangling.song@hotmail.com, glsong@xmu.edu.cn

收稿日期: 2019-03-11

  修回日期: 2019-04-17

  网络出版日期: 2019-04-18

基金资助

基金国家自然科学基金项目(51671163);基金国家自然科学基金项目(51731008)

Electrochemical Response of A Single Wire-Electrode AC Probe in 3.5wt.% NaCl

  • Zhen-wen ZOU ,
  • Da-jiang ZHENG ,
  • Zi-ming WANG ,
  • Guang-ling SONG
Expand
  • 1. Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University,Xiamen 361005, Fujian, China
    2. State Key Laboratory of Physical Chemistry of Solid Surfaces, XiamenUniversity, Xiamen 361005, Fujian, China

Received date: 2019-03-11

  Revised date: 2019-04-17

  Online published: 2019-04-18

摘要

本文应用新研发的一种无参比无辅助的单丝电极交流探头技术,研究碳钢和锌金属丝电极在3.5wt.% NaCl中的电化学腐蚀规律和牺牲阳极保护行为. 通过与传统的三电极电化学交流阻抗结果的对比和分析,进一步证明了该新型探头具有简便、快速、准确、稳定的特性,可实现定量评估. 测量显示,在3.5wt.% NaCl中,碳钢的瞬时腐蚀速率及累积腐蚀失重大于锌,它们腐蚀行为的差异与表面膜的性质及变化有关. 在碳钢-锌电偶对中,锌的保护效率可达到95%以上,且随浸泡时间增加先增加后减小.

本文引用格式

邹振文 , 郑大江 , 王子明 , 宋光铃 . 新型单丝电极交流探头在3.5wt.% NaCl中的电化学响应规律研究[J]. 电化学, 2020 , 26(3) : 317 -327 . DOI: 10.13208/j.electrochem.190321

Abstract

In this paper, a recently developed single wire-electrode AC probe technology which does not need a reference or counter electrode was employed to investigate the electrochemical corrosion and sacrificial anode protection behaviors of steel and zinc in 3.5wt.% NaCl. With this simple, fast, reliable and stable probe, the instantaneous corrosion rate and accumulated corrosion loss of carbon steel in 3.5wt.% NaCl were measured, and the results revealed that both were greater than those of zinc. Furthermore, the observed different corrosion behaviors between carbon steel and zinc during the immersion could be caused by their different surface films. With the galvanic couple of carbon steel-zinc, the protection efficiency offered by the anode zinc was found to be above 95%, and it increased initially and then decreased with immersion time.

参考文献

[1] Frankel G S, Pitting corrosion of metals - A review of the critical factors[J]. Journal of The Electrochemical Society, 1998,145(6):2186-2198.
[2] Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion[J]. Corrosion Engineering Science and Technology, 2004,39(1):25-30.
[3] Duffo G S, Farina S B, Giordano C M. Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures[J]. Electrochimica Acta, 2009,54(3):1010-1020.
[4] Bouazaze H, Huet F, Nogueira R P. A new approach for monitoring corrosion and flow characteristics in oil/brine mixtures[J]. Electrochimica Acta, 2005,50(10):2081-2090.
[5] Gonzalez J A, Miranda J M, Birbilis N, et al. Electrochemical techniques for studying corrosion of reinforcing steel: Limitations and advantages[J]. Corrosion, 2005,61(1):37-50.
[6] Zou Z W, Song G L, Wang Z M, et al. A single wire-electrode AC probe for monitoring instantaneous electrochemical parameters and accumulated change of the electrode[J]. Electrochimica Acta, 2019,321: UNSP134664.
[7] Song G L( 宋光铃), Zou Z W( 邹振文), Wang Z M( 王子明), et al. Electrochemical corrosion testing equipment and electrochemical corrosion testing method[P]. 中国专利,公开日:2019.12.31,公开号:CN108362637B.
[8] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000,56(9):935-941.
[9] Corvo F, Minotas J, Delgado J, et al. Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime[J]. Corrosion Science, 2005,47(4):883-892.
[10] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009,51(5):997-1006.
[11] Dong J H( 董俊华), Ke W( 柯伟). The accelerated test of simulated atmospheric corrosion and the rust evolution of low carbon steel[J]. Journal of Electrochemistryl( 电化学), 2009,15(2):170-178.
[12] Liu Y W, Wang Z Y, Cao G W, et al. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment[J]. Materials Chemistry and Physics, 2017,198:243-249.
[13] Shi S Y( 施善友), Wang B Y( 王本义). The potential - pH diagrams and selection on technological condition[J]. Journal of Hefei University of Technology(Natural Science)l( 合肥工业大学学报(自然科学版)), 1991,14(3):99-106.
[14] Ramanauskas R, Quintana P, Maldonado L, et al. Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings[J]. Surface & Coatings Technology, 1997,92(1/2):16-21.
[15] Spathis P, Poulios I. The corrosion and photocorrosion of zinc and zinc oxide coatings[J]. Corrosion Science, 1995,37(5):673-680.
[16] Song G L. Theoretical analysis of the measurement of polarisation resistance in reinforced concrete[J]. Cement & Concrete Composites, 2000,22(6):407-415.
[17] Jin A J. Cathodic protection effect of reinforced concrete beam specimens with zinc sacrificial anode in marine environment[J]. Advanced Materials Research, 2015,1125:345-349.
[18] Liu A Q( 刘安强), Xiao K( 肖葵), Li X G( 李晓刚), et al. Comparison of corrosion behavior of pure Zn and Zn-Al alloy coating in serious Xisha marine atmosphere environment[J]. Thermal Spray Technologyl( 热喷涂技术), 2015,7(4):46-52.
文章导航

/