欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

膜电极构型CO2还原电解单池的稳定性研究

  • 毛庆 ,
  • 李冰玉 ,
  • 景维云 ,
  • 赵健 ,
  • 刘松 ,
  • 黄延强 ,
  • 杜兆龙
展开
  • 1. 大连理工大学化工学院,辽宁 大连 116023
    2. 中国科学院大连化学物理研究所,航天催化与新材料研究室,辽宁 大连 116023
    3. 全球能源互联网研究院,北京 102200

收稿日期: 2019-03-05

  修回日期: 2019-04-08

  网络出版日期: 2019-04-12

基金资助

辽宁省自然科学基金项目(No. 201602162)、大连理工大学GF创新基金项目(No. DUT18GF308)和国家电网公司科技项目(No. SGRI-DL-71-16-015)资助

Stability Studies for a Membrane Electrode Assembly Type CO2 Electro-Reduction Electrolytic Cell

  • Qing MAO ,
  • Bing-yu LI ,
  • Wei-yun JING ,
  • Jian ZHAO ,
  • Song LIU ,
  • Yan-qiang HUANG ,
  • Zhao-long DU
Expand
  • 1. School of Chemical Engineer, Dalian University of Technology, Dalian 116024, China
    2. Laboratory of Aerospace Catalysts and New Materials, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
    3. Global Energy Interconnection Research Institute, Beijing 102200, China

Received date: 2019-03-05

  Revised date: 2019-04-08

  Online published: 2019-04-12

摘要

电化学还原CO2可实现CO2的资源化转化,是缓解因其过度排放所导致诸多环境问题的关键技术. 本文提出了一种膜电极(membrane electrode assembly,MEA)构型CO2还原电解单池的结构设计,可同步实现气体扩散阴极两侧CO2的供给与电解质液层的更新. 基于该MEA构型电解池,实验考察了电解质液层中KHCO3浓度和更新与否对氮掺杂石墨烯锚定的Ni电极表面CO2电还原制备CO的反应活性、产物分布与稳定性的影响. 结果表明,若电流密度低于5 mA·cm-2,KHCO3浓度显著影响电解电势而非产物分布. CO2还原电解单池在稳定运行中存在着“可逆”与“不可逆”两种衰减模式. 其中,阴极/电解质界面处催化剂的流失是 “不可逆”衰减形成的原因;而电解质液层中KHCO3溶液的流失导致了MEA构型CO2还原单池的“可逆”衰减,周期性更新KHCO3电解质是降低其“可逆”衰减的有效方法.

本文引用格式

毛庆 , 李冰玉 , 景维云 , 赵健 , 刘松 , 黄延强 , 杜兆龙 . 膜电极构型CO2还原电解单池的稳定性研究[J]. 电化学, 2020 , 26(3) : 359 -369 . DOI: 10.13208/j.electrochem.190305

Abstract

Electro-catalytic reduction is an efficient way to achieve resourcable transformation of CO2, which is one of the important techniques to solve the global environmental problems originated from excessive CO2 emission. In this study, a membrane electrode assembly(MEA) type CO2 electro-reduction electrolytic cell was constucted, which enables CO2 feeding and real-time KHCO3 aqueous updating on both sides of the cathode gas diffusion electrode (GDE). By means of the electrolytic cell, effects of KHCO3 concentration and updating inside the liquid electrolytic chamber on CO2 electro-reduction activity, production distribution and stability were investigated. The experimental results suggested that the KHCO3 concentration exerted strong influence on the cell voltage rather than the production distribution for the current densities lower than 5 mA·cm-2. The performance of MEA type CO2 electro-reduction cell decayed in both “reversible” and “irreversible” ways. Catalysts leaking at the GDE/liquid electrolyte interface might be respossible for the cell “irreversible” decay. Meanwhile, th leakage of KHCO3 aqueous electrolyte arose from gas accumulation in the liquid electrolytic chamber contributed to the “reversible” degradation, which could be recovered effectively by updating the KHCO3 aqueous electrolyte.

参考文献

[1] Jing W Y( 景维云), Mao Q( 毛庆), Shi Y( 石越), et al. Research progress of electro-catalytic reduction of CO2 to hydrocarbons[J]. Chemical Industry and Engineering Progressl( 化工进展), 2017,36(6):2150-2157.
[2] Wang F Y( 王付燕), Sun H Z( 孙洪志), Song M X( 孙洪志), et al. Research progress of ammoniation reaction of carbon dioxide[J]. Chemical Industry and Engineering Progressl( 化工进展), 2014,33(1):209-212.
[3] Zhao D( 赵丹), Wang Wen Z( 王文珍), Jia X G( 贾新刚), et al. Progress in synjournal of organic carbonates and polycarbonates from carbon dioxide[J]. Modern Chemical Industryl( 现代化工). 2015,35(7):32-36.
[4] Yu Y M( 于英民). Supercritical carbon dioxide catalytic hydrogenation to formic acid on the immobilized ruthenium catalyst[D]. Zhejiang Universityl( 浙江大学), 2006.
[5] Niu L( 牛量), Yu T( 于涛), Zhang X( 张晓), et al. Research process in catalysts for carbon dioxide reforming of methane to synjournal gas[J]. Journal of Jilin Institute of Chemical Technologyl( 吉林化工学院学报), 2018,35(11):8-13.
[6] Liu R, Tian H F, Yang A M, et al. Preparation of HZSM-5 membrane packed CuO-ZnO-Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether[J]. Applied Surface Science, 2015,345:1-9.
[7] Lingampalli S R, Monis Ayyub M, Magesh G, et al. Photocatalytic reduction of CO2 by employing Zno/Ag1-X CuX/Cds and related heterostructures[J]. Chemical Physics Letters, 2018,691:28-32.
[8] Byoungsu K, Sichao M, Huei-Ru M J, et al. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer[J]. Electrochimica Acta, 2015,166:271-276.
[9] Li B, Niu W, Cheng Y, et al. Preparation of Cu2O modified TiO2, nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH[J]. Chemical Physics Letters, 2018,700:57-63.
[10] He J F, Johnson N J J, Huang A X. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018,11(1):48-57.
[11] Wen G B, Li D U, Ren B H, et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production[J]. Advanced Energy Materials, 2018,8(31):1802427.
[12] Saberi S T, Mepham A, Zheng X, et al. High-density nanosharp microstructures enable efficient CO2, electroreduction[J]. Nano Letters, 2016,16(11):7224-7228.
[13] Yang H B, Hung S, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018,3(2):140-147.
[14] Yang W F, Ma W S, Zhang Z H, et al. Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO2 reduction[J]. Faraday Discussions, 2018,210:289-299.
[15] Rasul S, Anjum D H, Jedidi A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015,54(7):2146-2150.
[16] Mao Q, Sun G Q, Wang S L, et al. Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes[J]. Electrochimica Acta, 2007,52(24):6763-770.
[17] Carmo M, Fritz D L, Merge J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013,38(12):4901-4934.
[18] Delacourt C, Ridgway P L, Kerr J B, et al. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society . 2008,155(1):B42-B49.
[19] Delacourt C, Newman J. Mathematical modeling of CO2 reduction to CO in aqueous electrolytes II. Study of an electrolysis cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society . 2010,157(12):B1911-B1926.
[20] Lee W, Kim Y E, Youn M H, et al. Catholyte-free electrocatalytic CO2 reduction into formate[J]. Angewandte Chemie International Edition, 2018,57(22):6883-6887.
[21] Subramanian K, Asokan K, Jeevarathinam D, et al. Electrochemical membrane reactor for the reduction of carbondioxide to formate[J]. Journal of Applied Electrochemistry. 2007,37(2):255-260.
[22] Innocent B, Liaigre D, Pasquier D, et al. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium[J]. Journal of Applied Electrochemistry. 2009,39(2):227-232.
[23] Wu J, Risalvato F G, Ke F, et al. Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the horiivity and activity with Sn electrode[J]. Journal of The Electrochemical Society, 2012,159(7):F353-F359.
[24] Wu J, Risalvato F G, Sharma P P, et al. Electrochemical reduction of carbon dioxide II. Design, assembly, and performance of low temperature full electrochemical cells[J]. Journal of The Electrochemical Society, 2013,160(9):F953-F957.
[25] Wu J, Risalvato F G, Ma S, et al. Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell[J]. Journal of Materials Chemistry A, 2014,2(6):1647-1651.
[26] Alves V A, Da Silva L A, Boodts J. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and faradaic impedance investigation of the oxygen evolution reaction from alkaline solution[J]. Electrochimica Acta, 1998,44(8/9):1525-1534.
[27] Zhong H, Fujii K, Nakano Y. Effect of KHCO3 concentration on electrochemical reduction of CO2 on copper electrode[J]. Journal of The Electrochemical Society, 2017,164(9):F923-F927.
[28] Hashiba H, Weng C, Chen Y, et al. Effects of electrolyte buffer capacity on surface reactant species and reaction rate of CO2 in electrochemical CO2 reduction[J]. Journal of Physical Chemistry C, 2018,122(7):3719-3726.
[29] Murata A, Hori Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J]. Bulletin of the Chemical Society of Japan, 2006,64(1):123-127.
[30] Hori Y, Murata A, Takahashi R. Cheminform abstract: formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. ChemInform, 1990,21(2):2309-2326.
[31] Hori Y. Electrochemical CO2 reduction on metal electrodes[M]. Modern Aspects of Electrochemistry, 2008,42:89-189.
[32] Büchi F N, Inaba M, Schmidt T J. Polymer electrolyte fuel cell durability[M]. New York, Springer, 2009: 235.
文章导航

/