高容量材料Si@CPZS在锂离子电池中的储锂性能研究
a. 共同第一作者.
收稿日期: 2019-02-26
修回日期: 2019-03-22
网络出版日期: 2019-03-29
基金资助
国家自然科学基金项目(21573265);国家自然科学基金项目(21805292)
版权
Lithium Storage Performance of High Capacity Material Si@CPZS in Lithium Ion Batteries
Received date: 2019-02-26
Revised date: 2019-03-22
Online published: 2019-03-29
Copyright
本文通过简单的溶胶-凝胶法以聚环三磷腈-4,4'-磺酰基二苯酚聚合物(PZS)为碳源通过在硅纳米颗粒表面包覆碳层,成功构筑了核壳结构的Si@C复合材料. 通过对不同厚度碳层包覆的Si@CPZS的储锂性能进行研究,发现当硅表面PZS衍生碳厚度为10 nm时具有最佳的储锂性能,且经过长达290圈的循环后容量仍然保持在940 mAh·g-1,并且利用X射线衍射图谱、热重、比表面孔径测定仪及透射电镜等分析手段对样品进行了结构和组分分析. 本文进一步将Si@CPZS复合材料作为石墨的添加剂,结果表明30%的Si@CPZS复合材料可将石墨负极的容量提升至700 mAh·g-1.
张庆暖 , 张芳芳 , 李红霞 , 杨兵军 , 李小成 , 杨娟 . 高容量材料Si@CPZS在锂离子电池中的储锂性能研究[J]. 电化学, 2020 , 26(1) : 121 -129 . DOI: 10.13208/j.electrochem.190226
Carbon layers with different thicknesses were introduced into the surfaces of silicon (Si) nanoparticles by sol-gel method using poly (cyclotriphosphazene-co-4, 4'-sulfonyldiphenol) as the carbon source. Technologies of X-ray diffraction, thermo-gravimetric analysis, Brunauer-Emmett-Teller and transmission electron microscopy were employed to analyze the structures and components of the as-prepared Si@CPZS composites. Electrochemical performance of Si@CPZS with different carbon thicknesses was studied. The results showed that Si@CPZS with carbon thickness of 10 nm possessed the best performance. Its capacity remained 940 mAh·g-1 after 290 cycles under 500 mA·g-1. As the addictive, the graphite-based anode contained 30% of Si@CPZS composite could achieve the specific capacity higher than 700 mAh·g-1.
Key words: Si@C; anode; lithium ion battery; addictive of graphite
[1] | Lang J W, Zhang X, Liu B , et al. The roles of graphene in advanced Li-ion hybrid supercapacitors[J]. Journal of Energy Chemistry, 2018,27(1):43-56. |
[2] | Casimir A, Zhang H, Ogoke O , et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synjournal and electrode preparation[J]. Nano Energy, 2016,27:359-376. |
[3] | Lee J K, Oh C, Kim N , et al. Rational design of silicon-based composites for high-energy storage devices[J]. Journal of Materials Chemistry A, 2016,4(15):5366-5384. |
[4] | Woo S G, Han J H, Kim K J , et al. Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2015,153:115-121. |
[5] | Zhou X, Han K, Jiang H , et al. High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries[J]. Electrochimica Acta, 2017,245:14-24. |
[6] | Hassan F M, Elsayed A R, Chabot V , et al. Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: high-performance anode material for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014,6(16):13757-13764. |
[7] | Liu L H, Lyu J, Li T H , et al. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes[J]. Nanoscale, 2016,8(2):701-722. |
[8] | Yang T, Li X, Tian X D , et al. Preparation and electrochemical performance of Si@C/SiOx as anode material for lithium-ion batteries[J]. Journal of Inorganic Materials, 2017,32(7):699-704. |
[9] | Bai X J, Liu C, Hou M , et al. Silicon/CNTs/Graphene free-standing anode material for lithium-ion battery[J]. Journal of Inorganic Materials, 2017,32(7):705-712. |
[10] | Zhou L, Zhuang Z, Zhao H , et al. Intricate hollow structures: controlled synjournal and applications in energy storage and conversion[J]. Advanced Materials, 2017,29(20):1602914. |
[11] | Pan L, Wang H B, Gao D C , et al. Facile synjournal of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries[J]. Chemical Communications, 2014,50(44):5878-5880. |
[12] | Shen T, Xia X H, Xie D , et al. Encapsulating silicon nano-particles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries[J]. Journal of Materials Chemistry A, 2017,5(22):11197-11203. |
[13] | `Liu N, Lu Z D, Zhao J , et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014,9(3):187-192. |
[14] | Zhang L, Rajagopalan R, Guo H , et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries[J]. Advanced Functional Materials, 2016,26(3):440-446. |
[15] | Wu H, Chan G, Choi J W , et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012,7(5):310-315. |
[16] | Zhang J W, Huang X B, Wei H , et al. Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic-organic hybrid polyphosphazene nanotubes as fillers[J]. Journal of Solid State Electrochemistry, 2012,16(1):101-107. |
[17] | Lin N, Zhou J B, Wang L B , et al. Polyaniline-assisted synjournal of Si@C/RGO as anode material for rechargeable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015,7(1):409-414. |
[18] | Du F H, Ni Y, Ye Wang Y , et al. Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries[J]. ACS Nano, 2017,11(9):8628-8635. |
[19] | Du F H, Ni Y, Wang Y , et al. Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries[J]. ACS Nano, 2017,11(9):8628-8635. |
[20] | Luo W, Wang Y X, Chou S L , et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes[J]. Nano Energy, 2016,27:255-264. |
[21] | Hu Y S, Demir-Cakan R, Titirici M M , et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2008,47(9):1645-1649. |
/
〈 |
|
〉 |