欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Ni-Fe/Ti和Ni-Fe-S/Ti的制备及其电催化水分解性能

  • 陆杭烁 ,
  • 何小波 ,
  • 银凤翔 ,
  • 李国儒
展开
  • 1. 北京化工大学化学工程学院,北京 100029
    2. 常州大学石油化工学院,江苏省绿色催化材料与技术重点实验室,江苏 常州 213164
    3. 北京化工大学常州先进材料研究院,江苏 常州 213164
* Tel: (86-519)86330253, E-mail: yinfx@cczu.edu.cn

收稿日期: 2019-01-14

  修回日期: 2019-04-01

  网络出版日期: 2019-03-29

基金资助

国家自然科学基金项目(21706010);江苏省自然科学基金面上项目(BK20161200)

版权

《电化学》编辑部, 2020, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Preparations of Nickel-Iron Hydroxide/Sulfide and Their Electrocatalytic Performances for Overall Water Splitting

  • Hang-shuo LU ,
  • Xiao-bo HE ,
  • Feng-xiang YIN ,
  • Guo-ru LI
Expand
  • 1. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2. Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
    3. Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, Jiangsu, China

Received date: 2019-01-14

  Revised date: 2019-04-01

  Online published: 2019-03-29

Copyright

, 2020, Copyright reserved © 2020

摘要

以钛网为基底,采用电沉积法制备了Ni-Fe/Ti析氧电极,然后将得到的Ni-Fe/Ti电极通过固相硫化制备了Ni-Fe-S/Ti析氢电极. 分别考察了电沉积液中Ni2+/Fe3+离子摩尔浓度比和硫脲加入量对Ni-Fe/Ti和Ni-Fe-S/Ti结构和电化学性能的影响. 结果表明,随着电沉积液中Ni2+含量的增加,Ni-Fe/Ti电极析氧性能先增强后减弱,Ni9Fe1/Ti电极具有最好的析氧性能;随着硫脲加入量的增加,Ni-Fe-S/Ti电极析氢性能呈现先增强后减弱的趋势,Ni9Fe1S0.25/Ti电极具有最好的析氢性能. 在50 mA·cm-2下,Ni9Fe1/Ti电极的析氧过电位为280 mV,Ni9Fe1S0.25/Ti电极的析氢过电位为269 mV,且均具有很好的稳定性. 将Ni9Fe1/Ti与Ni9Fe1S0.25/Ti分别作为阳极和阴极进行电催化全水分解,电流密度达到50 mA·cm-2所需电势仅1.69 V,表现出很好的全水解催化性能.

本文引用格式

陆杭烁 , 何小波 , 银凤翔 , 李国儒 . Ni-Fe/Ti和Ni-Fe-S/Ti的制备及其电催化水分解性能[J]. 电化学, 2020 , 26(1) : 136 -147 . DOI: 10.13208/j.electrochem.190114

Abstract

The Ni-Fe/Ti oxygen evolution electrode was prepared by electrodeposition on a titanium mesh substrate. Then, the as prepared Ni-Fe/Ti electrode was used to derive the Ni-Fe-S/Ti hydrogen evolution electrode through solid phase sulfuration. The effects of the molar ratio of Ni2+ to Fe3+ in the electrolyte and the amount of thiourea on the structures and electrochemical performances of Ni-Fe/Ti and Ni-Fe-S/Ti electrodes were investigated. The results show that the oxygen evolution performance of Ni-Fe/Ti electrode was first increased and then decreased with the increase of nickel ion content in the electrolyte. The Ni9Fe1/Ti electrode exhibited the best oxygen evolution performance. With the increase of thiourea addition, the hydrogen evolution performance of Ni-Fe-S/Ti electrode was increased firstly and then decreased. The Ni9Fe1S0.25/Ti electrode showed the best hydrogen evolution performance. To achieve a current density of 50 mA·cm-2, an overpotential of 280 mV was required for oxygen evolution reaction (OER) with the Ni9Fe1/Ti electrode, while 269 mV for hydrogen evolution reaction (HER) with the Ni9Fe1S0.25/Ti electrode, both with good stabilities. Accordingly, the Ni9Fe1/Ti and Ni9Fe1S0.25/Ti electrode were used as anodes and cathodes, respectively, for overall water splitting tests. The current density of 50 mA·cm-2 was achieved at a voltage of 1.69 V, showing the good catalytic performance of overall water splitting.

参考文献

[1] Holladay J D, Hu J, King D L , et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009,139(4):244-260.
[2] Li Y( 李阳), Luo Z Y( 罗兆艳), Ge J J( 葛君杰 ), et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(6):572-588.
[3] Xiao G( 肖钢 ). Fuel cell technology[M]. Bejing: Publishing House of Electronics Industry( 电子工业出版社), 2009.
[4] Lin Z D( 吝子东), Bai S( 白松), Zhang X H( 张晓辉 ). Development prospect of water electrolysis hydrogen production technology[J]. Chemical Defence on Ships( 舰船防化), 2014,2:48-54.
[5] Zhang B, Zheng X L, Voznyy O , et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016,352(3):333-337.
[6] Han A L, Jin S, Chen H L , et al. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0-14[J]. Journal of Materials Chemistry A, 2015,3(5):1941-1946.
[7] Bae S H, Kim J E, Randriamahazaka H , et al. Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Co nanowire network for highly efficient oxygen evolution[J]. Advanced Energy Materials, 2017,7(1):1601492.
[8] Zhang X( 张晓), He X B( 何小波), Li X( 李响 ), et al. Recent progress in the electrocatalysts based on Fe, Co and Ni for electrocatalytic hydrogen evolution reaction[J]. The Journal of New Industrialization( 新型工业化), 2016,6(10):1-9.
[9] Jiang N, You B, Sheng M L , et al. Bifunctionality and mechanism of electrodeposited nickel-phosphorous films for efficient overall water splitting[J]. ChemCatChem, 2016,8(1):106-112.
[10] Jiang J, Zhang A L, Li L L , et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction[J]. Journal of Power Sources, 2015,278:445-451.
[11] Yu L, Zhou H Q, Sun J Y , et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting[J]. Energy & Environmental Science, 2017,10(8):1820-1827.
[12] Song F, Hu X L . Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014,5:4477-4485.
[13] Zhao D D( 赵丹丹), Zhang Nan( 张楠), Bu L Z( 卜令正 ) , et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(5):455-465.
[14] Ovshinsky S R, Fetcenko M A, Venkatesan S , et al. Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells[J]. Journal of Power Sources, 1994,70(2):294-294.
[15] Trotochaud L, Young S L, Ranney J K , et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. Journal of the American Chemical Society, 2014,136(18):6744-6753.
[16] Ganesan P, Sivanantham A, Shanmugam S . Inexpensive electrochemical synjournal of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis[J]. Journal of Materials Chemistry A, 2016,4(42):16394-16402.
[17] Faber M S, Lukowski M A, Ding Q , et al. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis[J]. Journal of Physical Chemistry C, 2014,118(37):21347-21356.
[18] Kibsgaard J, Chen Z, Reinecke B N , et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012,11(11):963-969.
[19] Long X, Li G X, Wang Z L , et al. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media[J]. Journalof the American Chemical Society, 2015,137(37):11900-11903.
[20] Wang D Y, Gong M, Chou H L , et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015,137(4):1587-1592.
[21] Luo J S, Im J H, Mayer M T , et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts[J]. Science, 2014,345(6204):1593-1596.
[22] Zhang H J, Li X P, H?hnel A , et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Advanced Functional Materials, 2018,14:1706847.
[23] Feng L L, Yu G T, Wu Y Y , et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015,137(44):14023-14026.
[24] Wu Y Y, Liu Y P, Li G D , et al. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays[J]. Nano Energy, 2017,35:161-170.
[25] Liu J( 刘佳), Ge X B( 葛性波 ). Recent advances in Fe based oxygen evolution catalysts via electrodeposition method[J]. Applied Chemical Industry( 应用化工), 2017,46(8):1603-1607.
[26] Yarger M S, Steinmiller E M, Choi K S . Electrochemical synjournal of Zn-Al layered double hydroxide (LDH) films[J]. Inorganic Chemistry, 2008,47(13):5859-5865.
[27] Pu Z H, Liu Q, Tang C , et al. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode[J]. Nanoscale, 2014,6(19):11031-11034.
[28] Wang X H( 王新红 ). Study on the thermal analysis of thiourea[J]. Applied Chemical Industry( 应用化工), 2008,37(6):691-693.
[29] Lin H L, Liu N, Shi Z P , et al. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2016,26(31):5590-5598.
[30] Lee E, Park A H, Park H U , et al. Facile sonochemical synjournal of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction[J]. Ultrasonics Sonochemistry, 2017,40(Pt A):552-557.
[31] Yang N, Tang C, Wang K Y , et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting[J]. Nano Research, 2016,9(11):3346-3354.
[32] Liu X, Cui S S, Sun Z J , et al. Self-supported copper oxide electrocatalyst for water oxidation at low overpotential and confirmation of its robustness by Cu K-Edge X-ray absorption spectroscopy[J]. Journal of Physical Chemistry C, 2016,120(2):831-840.
[33] Tian J Q, Cheng N Y, Liu Q , et al. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting[J]. Journal of Materials Chemistry A, 2015,3(40):20056-20059.
[34] Xing J, Li H, Cheng M M , et al. Electro-synjournal of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2016,4(36):13866-13873.
[35] Wang W Y, Yang L, Qu F L , et al. A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017,5(32):16585-16589.
[36] Sivanantham A, Ganesan P, Shanmugam S . Hierarchical NiCo2S4 nanowire arrays supported on ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J]. Advanced Functional Materials, 2016,26(26):4661-4672.
[37] Ledendecker M, Krick Calderón S, Papp C , et al. The synjournal of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(42):12361-12365.
[38] Tang C, Cheng N Y, Pu Z H , et al. NiSe nanowire film supported on Nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(32):9351-9355.
[39] Ling F, Jiang Z Q, Xu H T , et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting[J]. Journal of Catalysis, 2018,357:238-246.
[40] Xiao Y L, Tian C G, Tian M , et al. Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting[J]. Science China Materials, 61(1):80-90.
文章导航

/