欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

铜电极上二氧化碳还原机理的研究进展

  • MatthewMSartin ,
  • 陈微 ,
  • 贺凡 ,
  • 陈艳霞
展开
  • 合肥微尺度物质科学国家研究中心,中国科技大学化学物理系,安徽 合肥 230026

收稿日期: 2019-01-08

  修回日期: 2019-03-06

  网络出版日期: 2019-03-12

Recent Progress in the Mechanistic Understanding of CO2 Reduction on Copper

  • Matthew M SARTIN ,
  • Wei CHEN ,
  • Fan HE ,
  • Yan-xia CHEN
Expand
  • Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China

Received date: 2019-01-08

  Revised date: 2019-03-06

  Online published: 2019-03-12

摘要

本文从历史角度综述了二氧化碳在铜基催化剂上的还原机理的最新研究进展,对区分C1和C2产物路径发生的机制,以及调控二氧化碳还原产物选择性的影响因素和方法进行了重点阐述,着重讨论了如何利用电化学红外光谱与微分电化学质谱等技术在揭示反应机理方面的研究思路与方法学.

本文引用格式

MatthewMSartin , 陈微 , 贺凡 , 陈艳霞 . 铜电极上二氧化碳还原机理的研究进展[J]. 电化学, 2020 , 26(1) : 41 -53 . DOI: 10.13208/j.electrochem.181242

Abstract

In this review, we present the major developments in the understanding of the mechanisms of the electrochemical reduction of CO2 from a historical perspective. Most of the work discussed in this review was carried out at copper electrodes, as this is the only material at which hydrocarbons are produced in reasonable quantities. The emphasis focuses on the differentiation of mechanisms for the generation of C1 and C2 products as well as factors and methods for controlling the product selectivity of CO2 reduction. We have highlighted ambiguities, assumptions, and important methodologies, such as differential electrochemical mass spectrometry and electrochemical in-situ infrared spectroscopy, which help greatly to clarify these issues in the literature.

参考文献

[1] Yang H Q, Xu Z H, Fan M H , et al. Progress in carbon dioxide separation and capture: A review[J]. Journal of Environmental Sciences, 2008,20(1):14-27.
[2] Mikkelsen M, J?rgensen M, Krebs F C . The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy & Environmental Science, 2010,3(1):43-81.
[3] Hori Y, Kikuchi K, Murata A , et al. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1986,6:897-898.
[4] Kuhl K P, Cave E R, Abram D N , et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012,5(5):7050-7059.
[5] Ting L R L, Yeo B S . Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide[J]. Current Opinion in Electrochemistry, 2018,8:126-134.
[6] Raciti D, Wang C . Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Letters, 2018,3(7):1545-1556.
[7] Kortlever R, Shen J, Schouten K J P , et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. Journal of Physical Chemistry Letters, 2015,6(20):4073-4082.
[8] Tian Z Q, Priest C, Chen L . Recent progress in the theoretical investigation of electrocatalytic reduction of CO2[J]. Advanced Theory and Simulations, 2018,1(5):1800004.
[9] Rendón-Calle A, Builes S, Calle-Vallejo F . A brief review of the computational modeling of CO2 electroreduction on Cu electrodes[J]. Current Opinion in Electrochemistry, 2018,9:158-165.
[10] Yoo J S, Christensen R, Vegge T , et al. Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid[J]. ChemSusChem, 2016,9(4):358-363.
[11] Costentin C, Robert M, Saveant J M . Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013,42(6):2423-2436.
[12] Qiao J L, Liu Y Y, Hong F , et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631-675.
[13] Kumar B, Brian J P, Atla V , et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction[J]. Catalysis Today, 2016,270:19-30.
[14] Hori Y . Electrochemical CO2 reduction on metal electrodes[M]//Modern Aspects of Electrochemistry, Vayenas C G, White R E, Gamboa-Aldeco M E (Eds.), Springer, New York, 200:89-189.
[15] Bagger A, Wen Ju, Varela A S , et al. Electrochemical CO2 reduction: A classification problem[J]. ChemPhys-Chem, 2017,18(22):3266-3273.
[16] Quaino P, Juarez F, Santos E , et al. Volcano plots in hydrogen electrocatalysis uses and abuses[J]. Beilstein Journal of Nanotechnology, 2014,5:846-854.
[17] Trasatti S . Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972,39(1):163-184.
[18] Sarkar S, Peter S C . An overview on Pd-based electrocatalysts for the hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2018,5(9):2060-2080.
[19] Jung N, Cho Y H, Ahn M , et al. Methanol-tolerant cathode electrode structure composed of heterogeneous composites to overcome methanol crossover effects for direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2011,36(24):15731-15738.
[20] Chung D Y, Kim H I, Chung Y H , et al. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell[J]. Scientific Reports, 2014,4:7450.
[21] Feaster J T, Shi C, Cave E R , et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis, 2017,7(7):4822-4827.
[22] Chen Y H, Kanan M W . Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J]. Journal of the American Chemical Society, 2012,134(4):1986-1989.
[23] Baruch M F, Pander J E, White J L , et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy[J]. ACS Catalysis, 2015,5(5):3148-3156.
[24] Luc W, Collins C, Wang S , et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American Chemical Society, 2017,139(5):1885-1893.
[25] Lee C H, Kanan M W . Controlling H+ vs. CO2 reduction selectivity on Pb electrodes [J]. ACS Catalysis, 2015,5(1):465-469.
[26] DiMeglio J L, Rosenthal J . Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst[J]. Journal of the American Chemical Society, 2013,135(24):8798-8801.
[27] Zhao S, Jin R X, Jin R C . Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy Letters, 2018,3(2):452-462.
[28] Rosen B A, Salehi-Khojin A, Thorson M R , et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011,334(6056):643-644.
[29] Hatsukade T, Kuhl K P, Cave E R , et al. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Physical Chemistry Chemical Physics, 2014,16(27):13814-13819.
[30] Kuhl K P, Hatsukade T, Cave E R , et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces[J]. Journal of the American Chemical Society, 2014,136(40):14107-14113.
[31] Blyholder G . Molecular orbital view of chemisorbed carbon monoxide[J]. Journal of Chemical Physics, 1964,68(10):2772-2777.
[32] F?hlisch A, Nyberg M, Bennich P , et al. The bonding of CO to metal surfaces[J]. Journal of Chemical Physics, 2000,112(4):1946-1958.
[33] Koper M T M, van Santen R A, Wasileski S A , et al. Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces[J]. Journal of Chemical Physics, 2000,113(10):4392-4407.
[34] Yoshio H, Katsuhei K, Shin S . Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985,14(11):1695-1698.
[35] Wuttig A, Liu C, Peng Q L , et al. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis[J]. ACS Central Science, 2016,2(8):522-528.
[36] Hori Y, Koga O, Watanabe Y , et al. FTIR measurements of charge displacement adsorption of CO on poly- and single crystal (100) of Cu electrodes[J]. Electrochimica Acta, 1998,44:1389-1395.
[37] Saussey J, Lavalley J C, Lamotte J , et al. I.R. spectroscopic evidence of formyl species formed by CO and H2 Co-adsorption on ZnO and Cu-ZnO[J]. Journal of the Chemical Society, Chemical Communications, 1982,5:278-279.
[38] Hori Y, Takahashi R, Yoshinami Y , et al. Electrochemical reduction of CO at a copper electrode[J]. Journal of Physical Chemistry B, 1997,101(36):7075-7081.
[39] Qi L J, Liu S P, Gao W , et al. Mechanistic understanding of CO2 electroreduction on Cu2O[J]. Journal of Physical Chemistry C, 2018,122(10):5472-5480.
[40] Nie X W, Esopi M R, Janik M J , et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie International Edition, 2013,52(9):2459-2462.
[41] Schouten K J P, Kwon Y, van der Ham C J M , et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes[J]. Chemical Science, 2011,2(10):1902-1909.
[42] Kyriacou G, Anagnostopoulos A . Electroreduction of CO2 on differently prepared copper electrodes: The influence of electrode treatment on the current efficiences[J]. Journal of Electroanalytical Chemistry, 1992,322(1/2):233-246.
[43] Shiratsuchi R, Aikoh Y, Nogami G . Pulsed electroreduction of CO2 on copper electrodes[J]. Journal of The Electrochemical Society, 1993,140(12):3479-3482.
[44] Kimura K W, Fritz K E, Kim J , et al. Controlled selectivity of CO2 reduction on copper by pulsing the electrochemical potential[J]. ChemSusChem, 2018,11(11):1781-1786.
[45] Wang L, Nitopi S A, Bertheussen E , et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products[J]. ACS Ca-talysis, 2018,8(8):7445-7454.
[46] Peterson A A, Abild-Pedersen F, Studt F , et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010,3(9):1311-1315.
[47] Pérez-Gallent E, Figueiredo M C, Calle-Vallejo F , et al. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes[J]. Angewandte Chemie International Edition, 2017,129(13):3621-3624.
[48] Schouten K J P, Qin Z, Pérez Gallent E , et al. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes[J]. Journal of the American Chemical Society, 2012,134(24):9864-9867.
[49] Luo W J, Nie X W, Janik M J , et al. Facet dependence of CO2 reduction paths on Cu electrodes[J]. ACS Catalysis, 2016,6(1):219-229.
[50] Montoya J H, Shi C, Chan K , et al. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction[J]. Journal of Physical Chemistry Letters, 2015,6(11):2032-2037.
[51] Xiao H, Cheng T, Goddard W A , et al. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111)[J]. Journal of the American Chemical Society, 2016,138(2):483-486.
[52] Cheng T, Xiao H, Goddard W A . Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0[J]. Journal of Physical Chemistry Letters, 2015,6(23):4767-4773.
[53] Goodpaster J D, Bell A T, Head-Gordon M . Identification of possible pathways for C-C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model[J]. Journal of Physical Chemistry Letters, 2016,7(8):1471-1477.
[54] Garza A J, Bell A T, Head-Gordon M . Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products[J]. ACS Catalysis, 2018,8(2):1490-1499.
[55] Dunwell M, Yan Y S, Xu B J . Understanding the influence of the electrochemical double-layer on heterogeneous electrochemical reactions[J]. Current Opinion in Chemical Engineering, 2018,20:151-158.
[56] Zhu S Q, Jiang B, Cai W B , et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. 2017,139(44):15664-15667.
[57] Resasco J, Lum Y, Clark E , et al. Effects of anion identity and concentration on electrochemical reduction of CO2[J]. ChemElectroChem, 2018,5(7):1064-1072.
[58] Akira M, Yoshio H . Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J]. Bulletin of the Chemical Society of Japan, 1991,64(1):123-127.
[59] Singh M R, Kwon Y, Lum Y , et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016,138(39):13006-13012.
[60] Pérez-Gallent E, Marcandalli G, Figueiredo M C , et al. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes[J]. Journal of the American Chemical Society, 2017,139(45):16412-16419.
[61] Resasco J, Chen L D, Clark E , et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2017,139(32):11277-11287.
[62] Hori Y, Wakebe H, Tsukamoto T , et al. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons[J]. Surface Science, 1995,335:258-263.
[63] Li H J, Li Y d, Koper M T M , et al. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis[J]. Journal of the American Chemical Society, 2014,136(44):15694-15701.
[64] Shaw S K, Berna A, Feliu J M , et al. Role of axially coordinated surface sites for electrochemically controlled carbon monoxide adsorption on single crystal copper electrodes[J]. Physical Chemistry Chemical Physics, 2011,13(12):5242-5251.
[65] Salimon J, Hernández-Romero R M, Kalaji M . The dynamics of the conversion of linear to bridge bonded CO on Cu[J]. Journal of Electroanalytical Chemistry, 2002,538:99-108.
[66] Gunathunge C M, Ovalle V J, Li Y , et al. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH[J]. ACS Catalysis, 2018,8(8):7507-7516.
[67] Baricuatro J H, Kim Y G, Korzeniewski C L , et al. Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials[J]. Electrochemistry Communication, 2018,91:1-4.
[68] Huang Y, Handoko A D, Hirunsit P , et al. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene[J]. ACS Catalysis, 2017,7(3):1749-1756.
[69] Zhang R G, Hao X B, Duan T , et al. Adsorption and activation of CO and H2, the corresponding equilibrium phase diagrams under different temperature and partial pressures over Cu(100) surface: Insights into the effects of coverage and solvent effect[J]. Fuel Processing Technology, 2017,156:253-264.
[70] Hussain A . Beneficial effect of Cu on a Cu-modified Au catalytic surface for CO oxidation reaction: A DFT study[J]. Journal of Physical Chemistry C, 2013,117(10):5084-5094.
[71] Dunwell M, Yang X, Yan Y S , et al. Potential routes and mitigation strategies for contamination in interfacial specific infrared spectroelectrochemical studies[J]. Journal of Physical Chemistry C, 2018,122(43):24658-24664.
[72] Sartin M M, Yu Z Y, Chen W , et al. Effect of particle shape and electrolyte cation on CO adsorption to copper oxide nanoparticle electrocatalysts[J]. Journal of Physical Chemistry C, 2018,122(46):26489-26498.
文章导航

/