单晶电极界面反应过程的电化学原位拉曼光谱研究
收稿日期: 2018-12-04
修回日期: 2019-01-30
网络出版日期: 2019-03-12
基金资助
国家自然科学基金项目(21522508);国家自然科学基金项目(21775127)
In-Situ Raman Spectroscopic Study of Electrochemical Reactions at Single Crystal Surfaces
Received date: 2018-12-04
Revised date: 2019-01-30
Online published: 2019-03-12
自20世纪70年代起,人们利用原位光谱技术(拉曼、红外等)对电化学界面进行了系统的研究,进而发展出原位谱学电化学的研究方向,由于其具有良好的表面灵敏度和能量分辨率,可以提供更多的表面反应信息,进而从微观上揭示反应机理. 伴随着纳米技术的兴起,表面增强拉曼光谱技术取得了快速的发展. 近来,壳层隔绝纳米粒子增强拉曼光谱(shell-isolated nanoparticle-enhanced Raman spectroscopy,SHINERS)技术更是得到人们的广泛关注. SHINERS的出现为研究单晶模型电极上的催化反应提供了一种非常好的原位光谱技术. 本文主要对原位电化学SHINERS技术在单晶电极界面研究的具体应用及其发展前景进行相关论述.
关键词: 壳层隔绝纳米粒子增强拉曼光谱; 谱学电化学; 单晶电极; 原位研究
苏敏 , 董金超 , 李剑锋 . 单晶电极界面反应过程的电化学原位拉曼光谱研究[J]. 电化学, 2020 , 26(1) : 54 -60 . DOI: 10.13208/j.electrochem.181241
Since the 1970s, in-situ spectroscopy (Raman, infrared, etc.) has been used to systematically study the electrochemical interfacial reactions which can provide more information about surface reactions and reveal the mechanisms from microscopic view due to its excellent surface sensitivity and energy resolution. With the development of nano-technology, surface-enhanced Raman scattering effect spectroscopy has made rapid progress. Recently, the emergence of SHINERS provides a good in-situ spectroscopic technique for the study of catalytic reactions on single crystal model electrodes with deterministic surface structure. In this paper, we have summarized the application of SHINERS in the study of single crystal interface, and outlined the perspectives of SHINERS research in different fields.
[1] | Sun S G, Clavilier J . The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: an emirs study[J]. Journal of Electroanalytical Chemistry, 1988,240(1/2):147-159. |
[2] | Tian N, Zhou Z Y, Sun S G . Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles[J]. Journal of Physical Chemistry C, 2008,112(50):19801-19817. |
[3] | Krebs H J, Lüth H . Evidence for two different adsorption sites of CO on Pt(111) from infrared reflection spectroscopy[J]. Applied physics, 1977,14(4):337-342. |
[4] | Van Duyne R P, Haushalter J P . Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: tris(bipyridine)ruthenium(II) adsorbed on silver-modified n-gallium arsenide(100)[J]. Journal of Physical Chemistry, 1983,87(16):2999-3003. |
[5] | Van Duyne R P, Haushalter J P, Janik-Czachor M , et al. Surface-enhanced resonance Raman spectroscopy of adsorbates on semiconductor electrode surfaces. 2. In situ studies of transition metal (iron and ruthenium) complexes on silver/gallium arsenide and silver/silicon[J]. Journal of Physical Chemistry, 1985,89(19):4055-4061. |
[6] | Fleischmann M, Tian Z Q, Li L J . Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates[J]. Journal of Electroanalytical Chemistry, 1987,217(2):397-410. |
[7] | Anderson M S . Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Applied Physics Letters, 2000,76(21):3130-3132. |
[8] | Li J F, Zhang Y J, Ding S Y , et al. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017,117(7):5002-5069. |
[9] | Li J F, Huang Y F, Ding Y , et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010,464(7287):392-395. |
[10] | Cai W B, Wan L J, Noda H , et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J]. Langmuir, 1998,14(24):6992-6998. |
[11] | Andreasen G, Vela M E, Salvarezza R C , et al. Dynamics of pyridine adsorption on gold(111) terraces in acid solution from in-situ scanning tunneling microscopy under potentiostatic control[J]. Langmuir, 1997,13(25):6814-6819. |
[12] | Henglein F, Lipkowski J, Kolb D M . An optical study of pyridine adsorption on gold using synchrotron radiation[J]. Journal of Electroanalytical Chemistry, 1991,303(1/2):245-253. |
[13] | Li J F, Zhang Y J, Rudnev A V , et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface[J]. Journal of the American Chemical Society, 2015,137(6):2400-2408. |
[14] | Wen B Y, Jin X, Li Y , et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces[J]. Analyst, 2016,141(12):3731-3736. |
[15] | Wen B Y, Yi J, Wang Y H , et al. In-situ monitoring of redox processes of viologen at Au(hkl) single-crystal electrodes using electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy[J] Electrochemistry Communications, 2016,72:131-134. |
[16] | Greeley J, Jaramillo T F, Bonde J . Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature Materials, 2006,5(11):909-913. |
[17] | Kibler L A, El-Aziz A M, Hoyer R , et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005,44(14):2080-2084. |
[18] | Wang Y H, Liang M M, Zhang Y J , et al. Probing interfacial electronic and catalytic properties on well-defined surfaces by using in situ Raman spectroscopy[J]. Angewandte Chemie International Edition, 2018,130(35):11427-11431. |
[19] | Brankovic S R, Ad?i? R R . Metal monolayer deposition by replacement of metal adlayers on electrode surfaces[J]. Surface Science, 2001,474(1/3):L173-L179. |
[20] | Schlaup C, Chorkendorff I . On the stability of copper overlayers on Au(111) and Au(100) electrodes under low potential conditions and in the presence on CO and CO2[J]. Surface Science, 2015,631:155-164. |
[21] | Kibler L A, Kleinert M, Randler R , et al. Initial stages of Pd deposition on Au(hkl) Part I: Pd on Au(111)[J]. Surface Science, 1999,443(1/2):19-30. |
[22] | Zhong J H, Jin X, Yang Z L , et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution[J]. Nature Nanotechnology, 2016,12(2):132-136. |
[23] | Li C Y, Dong J C, Jin X , et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2015,137(24):7648-7651. |
[24] | Dong J C, Zhang X G, Briega-Martos V , et al. In situ Raman spectral evidence for oxygen reduction reaction intermediates at platinum single crystal surfaces[J]. Nature Energy, 2019,4:60-67. |
/
〈 |
|
〉 |