欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

二次刻蚀聚酰亚胺负载CuxO纳米复合物薄膜电极用于葡萄糖的快速测定

  • 戴琬琳 ,
  • 鲁志伟 ,
  • 叶建山
展开
  • 华南理工大学化学与化工学院,广东 广州 510641

收稿日期: 2018-12-18

  修回日期: 2019-02-22

  网络出版日期: 2019-03-01

Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated with CuxO Nanocomposites: A Novel Electrode Substrate for Non-Enzymatic Glucose Sensors

  • DAI Wan-lin ,
  • LU Zhi-wei ,
  • YE Jian-shan
Expand
  • School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, P.R. China

Received date: 2018-12-18

  Revised date: 2019-02-22

  Online published: 2019-03-01

Supported by

This work was supported by Science and Technology Program of Guangdong Province (No. 2019B020219002, No. 2018A050506006), Natural Science Foundation of Guangdong Province (No. 2017A030312005) and National Natural Science Foundation of China (NSFC, No. 21875070).

摘要

本文采用激光刻蚀聚酰亚胺薄膜为载体, 浸泡吸附铜离子后经过二次刻蚀还原得到含有Cu(0)、Cu(I)和Cu(II)的纳米复合物薄膜电极(SLEPI/CuxO-FE). 通过表征可知,SLEPI/CuxO-FE具有大比表面积、丰富的活性位点以及良好的电催化性能. 实验结果表明,该电极对葡萄糖具有良好的电化学响应,并具有较好的稳定性和重现性,有望应用于葡萄糖的低成本检测.

本文引用格式

戴琬琳 , 鲁志伟 , 叶建山 . 二次刻蚀聚酰亚胺负载CuxO纳米复合物薄膜电极用于葡萄糖的快速测定[J]. 电化学, 2019 , 25(2) : 260 -269 . DOI: 10.13208/j.electrochem.181052

Abstract

In this work, a novel electrode substrate with graphene-like surface and CuxO nanocomposites derived from secondary-laser-etched polyimide (SLEPI) film was synthesized and applied in non-enzymatic glucose detection for the first time. Characterizations indicate that the as-prepared SLEPI/CuxO film electrode (SLEPI/CuxO-FE) possessed huge surface area, plentiful active sites and excellent electrocatalytic performance. The obtained sensor exhibited the high sensitivity and selectivity for glucose determination with a linear range of 0.05 mmol·L-1 to 3 mmol·L-1 and a detection limit of 1.72 μmol·L-1 (S/N=3), which provides a simple, flexible and low-cost electrochemical sensor for diabetes diagnosis.

参考文献

[1]  Wang J. Electrochemical glucose biosensors[J]. Chemical Reviews, 2008, 108(2): 814-825.
[2]  Cho N H, Shaw J E, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 204[J]. Diabetes Research and Clinical Practice, 2018, 138: 271-281.
[3]  Hu C, Jia W P. Diabetes in china: Epidemiology and genetic risk factors and their clinical utility in personalized medication[J]. Diabetes, 2018, 67(1): 3-11.
[4]  Han M, Liu S L, Bao J C, et al. Pd nanoparticle assemblies—As the substitute of HRP, in their biosensing applications for H2O2 and glucose[J]. Biosensors and Bioelectronics, 2012, 31(1): 151-156.
[5]  Hoa L T, Chung J S, Hur S H. A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis[J]. Sensors and Actuators B: Chemical, 2016, 223: 76-82.
[6]  Chen C, Ran R, Yang Z Y, et al. An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with pt microspheres[J]. Sen-
sors and Actuators B: Chemical, 2018, 256: 63-70.
[7]  Wang J P, Gao H, Sun F L, et al. Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide[J]. Sensors and Actuators B: Chemical, 2014, 191: 612-618.
[8]  Marimuthu T, Mohamad S, Alias Y. Needle-like polypyrrole-NiO composite for non-enzymatic detection of glucose[J]. Synthetic Metals, 2015, 207: 35-41.
[9]  Zhou S H, Feng X, Shi H Y, et al. Direct growth of vertically aligned arrays of Cu(OH)2 nanotubes for the electrochemical sensing of glucose[J]. Sensors and Actuators B-Chemical, 2013, 177: 445-452.
[10] Cao H M, Yang A L, Li H, et al. A non-enzymatic glucose sensing based on hollow cuprous oxide nanospheres in a nafion matrix[J]. Sensors and Actuators B: Chemical, 2015, 214: 169-173.
[11]  Zhang Y C, Liu Y X, Su L, et al. CuO nanowires based sensitive and selective non-enzymatic glucose detection[J]. Sensors and Actuators B: Chemical, 2014, 191: 86-93.
[12]  Ni P J, Sun Y J, Shi Y, et al. Facile fabrication of CuO nanowire modified Cu electrode for non-enzymatic glucose detection with enhanced sensitivity[J]. RSC Advances, 2014, 4(55): 28842-28847.
[13]  Tian J Q, Li H Y, Xing Z C, et al. One-pot green hydrothermal synthesis of CuO-Cu2O-Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation[J]. Catalysis Science & Technology, 2012, 2(11): 2227-2230.
[14]  Hsu Y W, Hsu T K, Sun C L, et al. Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications[J]. Electrochimica Acta, 2012, 82(21): 152-157.
[15]  Wang Q, Wang Q, Li M, et al. Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: Application for nonenzymatic glucose sensing[J]. RSC Advances, 2015, 5(21): 15861-15869.
[16]  Nia P M, Meng, W P, Lorestani F, et al. Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor[J]. Sensors and Actuators B: Chemical, 2015, 209: 100-108.
[17]  Lin X N, Lu Z W, Zhang Y, et al. A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of Cd(II) and Pb(II)[J]. Microchimica Acta, 2018, 185(9): DOI: 10.1007/s00604-018-2966-4.
[18]  Lin X N, Lu Z W, Dai W L, et al. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II)[J]. Journal of Electroanalytical Chemistry, 2018, 828: 41-49.
[19]  Lu Z W, Lin X N, Zhang J J, et al. Ionic liquid/poly-l-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion[J]. Electrochimica Acta, 2019, 295: 514-523.
[20]  Ye R Q, Peng Z W, Wang T, et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene[J]. ACS Nano, 2015, 9(9): 9244-9251.
[21]  Li Z Z, Chen Y, Xin Y M, et al. Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam[J]. Scientific Reports, 2015, 5: 16115.
[22]  Veerakumar P, Veeramani V, Chen S M, et al. Palladium nanoparticle incorporated porous activated carbon: Electrochemical detection of toxic metal ions [J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1319-1326.
[23]  Wang G F, Wei Y, Zhang W, et al. Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites [J]. Microchimica Acta, 2010, 168(1): 87-92.
[24]  Yang J, Cho M, Lee Y K. Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance[J]. Sensors and Actuators B: Chemical, 2016, 222: 674-681.
[25]  Wang Z, Cao X Q, Liu D N, et al. Copper-nitride nano-wires array: An efficient dual-functional catalyst electrode for sensitive and selective non-enzymatic glucose and hydrogen peroxide sensing[J]. Chemistry - A European Journal, 2017, 23(21): 4986-4989.
[26]  Xie F Y, Cao X Q, Qu F L, et al. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection[J]. Sensors and Actuators B: Chemical, 2018, 255: 1254-1261.
[27]  Chen T, Liu D N, Lu W B, et al. Three-dimensional Ni 2p nanoarray: An efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity[J]. Analytical Chemistry, 2016, 88(16): 7885-7889.
[28]  Li Y C(李艳彩), Huang F Y(黄富英), Li S X(李顺兴), et al. Glucose sensor based on the CuO nanoplatelets[J]. Journal of Electrochemistry(电化学), 2014, 20(1): 80-84.
文章导航

/