欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

硫在不同碳载体材料中的电化学性能研究

  • 张 波 ,
  • 刘 佳 ,
  • 刘晓晨 ,
  • 李德军
展开
  • 1. 天津师范大学物理与材料科学学院能源材料工程中心,天津 300387;2. 天津市储能材料表面技术国际联合研究中心,天津 300387

收稿日期: 2018-12-04

  修回日期: 2019-02-18

  网络出版日期: 2019-12-28

基金资助

天津师范大学人才引进项目(No. 011/5RL132)资助

Electrochemical Properties of Sulfur in Different Carbon Support Materials

  • ZHANG Bo ,
  • LIU Jia ,
  • LIU Xiao-chen ,
  • LI De-jun
Expand
  • 1. Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China; 2. Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, Tianjin 300387, China

Received date: 2018-12-04

  Revised date: 2019-02-18

  Online published: 2019-12-28

摘要

为了探索碳载体材料结构对于硫的电化学性能的影响,本文通过高温固相法将升华硫与石墨烯、导电炭黑、多孔碳等三种不同结构的碳载体材料复合,制备得到硫含量相近的三种硫碳复合材料. 通过电镜扫描、低温氮吸附、X射线衍射等方法,对所制备的硫碳复合材料的结构和硫的分布状态进行了表征和分析. 并进一步对三种复合材料进行了电化学性能测试,结果表明,硫负载到多孔碳中的电化学性能最好,其初始放电比容量达到了1623.2 mA·h·g-1,循环100周之后,其放电比容量仍能保持在845 mA·h·g-1. 这主要因为相比于石墨烯的层状结构和导电炭黑的链状结构,多孔碳材料中含有大量的微孔和介孔,负载硫后,与硫分子的接触面积大,活性物质的利用率高,从而提高了硫的电化学性能.

本文引用格式

张 波 , 刘 佳 , 刘晓晨 , 李德军 . 硫在不同碳载体材料中的电化学性能研究[J]. 电化学, 2019 , 25(6) : 749 -756 . DOI: 10.13208/j.electrochem.181117

Abstract

In order to investigate the effect of carbon structure on electrochemical performance of sulfur/carbon composite in lithium-sulfur battery, in this paper, sublimation sulfur was incorporated into three types of carbon materials, namely, graphene, carbon black and porous carbon. The three sulfur/carbon composites were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD) techniques, and their electrochemical performances were also studied. The results showed that the sulfur/porous carbon composite offered an initial discharge capacity of 1623.2 mA·h·g-1 and remained 845 mA·h·g-1 after 100 cycles. Compared with graphene and carbon black, the mesopores and micropores in porous carbon improved the utilization of sulfur, contributing to better electrochemical performance of sulfur.

参考文献

[1]  Terranova M L, Orlanducci S, Tamburri E, et al. Si/C hybrid nanostructures for Li-ion anodes: An overview[J]. Journal of Power Sources, 2014, 246: 167-177.
[2]  Zhang B(张波), Chen S T(陈思婷), Gao X P(高学平). Performance of sulfur-super conductive carbon black composite in electrolyte mixed with room temperature ionic liquid[J]. Journal of Electrochemistry(电化学),2010, 16(1): 36-38. 
[3]  Du W C, Yin Y X, Zeng X X, et al. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3584-3590.
[4]  Xiao Z B, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(18): 2891-2898.
[5]  Hu J J, Long G K, Liu S, et al. A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery[J]. Chemical Communications, 2014, 50: 14647-14650.
[6]  Li N W, Yin Y X, Yang C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858.
[7]  Chen J H(陈加航), Yang H J(杨慧军), Guo C(郭城), et al. Current status and prospect of battery configuration in Li-S system[J]. Journal of Electrochemistry(电化学),2019, 25(1): 3-16.
[8]  Yang C P, Yin Y X, Ye H, et al. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8789-8795.
[9]  Lyu Z Y, Xu D, Yang L J, et al. Hierarchical carbon nano-cages confining high-loading sulfur for high-rate lithium-sulfur batteries[J]. Nano Energy, 2015, 12: 657-665.
[10]  Qiu Y C, Li W F, Zhao W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped grapheme[J]. Nano Letters, 2014, 14(8): 4821-4827.
[11]  Zhu P Y, Song J X, Lv D P, et al. Mechanism of enhanced carbon cathode performance by nitrogen doping in lithium-sulfur battery: An X-ray absorption spectroscopic study[J]. The Journal of Physical Chemistry C, 2014, 118(15): 7765-7771.
[12]  Lai C(赖超),Li G C(李国春), Ye S H(叶世海), et al. Sulfur-carbon composite as cathode with high capacity[J]. Progress in Chemistry(化学进展), 2011, 23(2/3): 527-532.
[13]  Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769.
[14]  Zhou L(周兰), Yu A S(余爱水). current status and prospect of cathode materials for lithium sulfur batteries[J]. Journal of Electrochemistry(电化学),2015, 21(3): 211-220. 
[15]  Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531-1537.
[16]  Liang X, Wen Z, Liu Y, et al. Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries[J]. Solid State Ionics, 2011, 192(1): 347-350.
[17]  Zhang B, Zhao Y M, Liu J, X. et al. Impact of micro-/mesoporous carbonaceous structure on electrochemical performance of sulfur[J]. Electrochimica Acta, 2017, 248: 416-424.
[18]  Xu J T, Ma J M, Fan Q H, et al. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries[J]. Advanced Materials, 2017, 29: 1606454.
[19]  Wang D X, Fu A P, Li H L, et al. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 285: 469-477.
[20] Fu Y Z, Manthiram A. Core-shell structured sulfur-polypy-rrole composite cathodes for lithium-sulfur batteries[J]. RSC Advances, 2012, 2(14): 5927-5929.
[21]  Guo J X, Zhang J, Jiang F, et al. Microporous carbon nanosheets derived from corncobs for lithium-sulfur batteries[J]. Electrochimica Acta, 2015, 176: 853-860.
[22]  Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
[23]  Miao L X, Wang W K, Wang A B, et al. A high sulfur content composite with core-shell structure as cathode material for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(38): 11659-11664.
[24]  Guo Z J, Zhang B, Li D, et al. A mixed microporous/low-range mesoporous composite with high sulfur loading from hierarchically-structured carbon for lithium sulfur batteries[J]. Electrochimica Acta, 2017, 230: 181-188.
[25]  Zhou W D, Xiao X C, Cai M, et al. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries[J]. Nano letters, 2014, 14(9): 5250-5256.
[26]  Zhang Z Y, Lai Y Q, Zhang Z A, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61.
[27] Zhang K, Wen M, Wang S, et al. Sputter deposited NbCxNy films: Effect of nitrogen content on structure and mechanical and tribological properties[J]. Surface and Coatings Technology, 2014, 258: 746-753.

文章导航

/