欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Ta 5+掺杂Li7La3Zr2O12的合成及其性能研究

  • 彭峰峰 ,
  • 李世友 ,
  • 耿彤彤 ,
  • 李春雷 ,
  • 曾双威
展开
  • 兰州理工大学石油化工学院,甘肃 兰州 730050

收稿日期: 2018-11-05

  修回日期: 2019-02-16

  网络出版日期: 2019-02-21

基金资助

国家自然科学基金项目(21766017);白银项目(2017-2-11G);中科院“西部之光”-西部青年学者项目

Syntheses and Properties of Ta 5+ Doped Li7La3Zr2O12

  • Feng-feng PENG ,
  • Shi-you LI ,
  • Tong-tong GENG ,
  • Chun-lei LI ,
  • Shuang-wei ZENG
Expand
  • College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China

Received date: 2018-11-05

  Revised date: 2019-02-16

  Online published: 2019-02-21

摘要

本文采用固相法制备了Ta 5+掺杂的石榴石型无机固体电解质Li7-xLa3Zr2-xO12xTa-LLZO),研究了不同的掺杂量对材料性能的影响. 通过X射线发射光谱(XRD)、冷场发射电子扫描电镜(FESEM)和电化学阻抗(EIS)对材料进行物理表征和阻抗测试,并且组装LiFePO4//LLZTO//Li全固态锂电池测试电池的循环稳定性. 结果表明,随着Ta 5+掺杂的增加,材料呈现出一个单一的立方相结构,当Ta 5+掺杂量为14.09wt.%(即x=0.3)时,材料的室温离子电导率达到最大(2.58×10 -4 S·cm -1),呈现出稳定的立方相结构且具有相对较高的致密度(89.16%),并具有较稳定的循环稳定性,经过50个循环后容量保持率依然保持到88.67%左右.

本文引用格式

彭峰峰 , 李世友 , 耿彤彤 , 李春雷 , 曾双威 . Ta 5+掺杂Li7La3Zr2O12的合成及其性能研究[J]. 电化学, 2020 , 26(2) : 308 -314 . DOI: 10.13208/j.electrochem.181105

Abstract

The tantalum ion (Ta 5+) doped garnet-type inorganic solid electrolyte Ta-LLZO was prepared by solid state reaction, and the effect of doping amount on the properties of the materials was investigated. The materials were characterized by X-ray diffraction (XRD), field emission electron scanning microscopy (FESEM) and electrochemical impedance spectroscopy (EIS). And the cycle stability was tested by assembly of LiFePO4//LLZTO//Li all solid lithium battery. The results show that with the increase of Ta 5+ doping amount, the material appeared to form a single cubic phase structure. When the Ta 5+ doping content became 14.09wt.%, x=0.3, the room temperature ionic conductivity of the material reached the maximum (2.58×10 -4 S·cm -1), forming a stable cubic phase structure with a relatively high density (89.16%). In addition, the relatively stable cycle stability was obtained and the capacity retention rate remained at around 88.67% after 50 cycles.

参考文献

[1] Nagata H, Chikusa Y . An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions[J]. Journal of Power Sources, 2016,329:268-272.
[2] Whittingham M S . Introduction: batteries[J]. Chemical Reviews, 2014,114(23):11413.
[3] Kim T H, Park J S, Chang S K , et al. The current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials, 2012,2(7):860-872.
[4] Manthiram A, Yu X, Wang S . Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017,2(4):16103.
[5] Chung H, Kang B . Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium[J]. Solid State Ionics, 2014,263:125-130.
[6] Zhang M, Takahashi K, Uechi I , et al. Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 sheet prepared by tape casting method for lithium-air batteries[J]. Journal of Power Sources, 2013,235:117-121.
[7] Zhang M, Huang Z, Cheng J F , et al. Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting[J]. Journal of Alloys and Compounds, 2014,590:147-152.
[8] Liu Z, Venkatachalam S, Van Wüllen L . Structure, phase separation and Li dynamics in sol-gel-derived Li1+xAlxGe2-x-(PO4)3[J]. Solid State Ionics, 2015, 276: 47-55.
[9] Jadhav H S, Cho M S, Kalubarme R S , et al. Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics[J]. Journal of Power Sources, 2013,241:502-508.
[10] Morimoto H, Awano H, Terashima J , et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2-x(PO4)3 (x=0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell[J]. Journal of Power Sources, 2013,240:636-643.
[11] Illbeigi M, Fazlali A, Kazazi M , et al. Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass-ceramics[J]. Solid State Ionics, 2016,289:180-187.
[12] Yao X, Huang B, Yin J , et al. All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science[J]. Chinese Physics B, 2016,25(1):018802.
[13] Kunshina G B, Efremov V V, Lokshin E P . Synjournal and study of ion conductivity of Li3-xLa2/3-xTiO3[J]. Russian Journal of Electrochemistry, 2015,51(6):551-555.
[14] Zhong S W( 钟盛文), Huang B( 黄冰 ). Effect of excess lithium on properties of perovskite Li3/8Sr7/16Ta3/4Hf1/4O3 solid electrolyte[J]. Nonferrous Metal Science and Engineering( 有色金属科学与工程), 2017,8(1):70-74.
[15] Murugan R, Thangadurai V, Weppner W . Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007,46(41):7778-7781.
[16] Lee C H, Park G J, Choi J H , et al. Low temperature synjournal of garnet type solid electrolyte by modified polymer complex process and its characterization[J]. Materials Research Bulletin, 2016,83:309-315.
[17] Baek S W, Lee J M, Kim T Y , et al. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries[J]. Journal of Power Sources, 2014,249:197-206.
[18] Howard M A, Clemens O, Kendrick E , et al. Effect of Ga incorporation on the structure and Li ion conductivity of La3Zr2Li7O12[J]. Dalton Transactions, 2012,41(39):12048-12053.
[19] Rettenwander D, Geiger C A, Amthauer G . Synjournal and crystal chemistry of the fast Li-ion conductor Li7La3Zr2O12 doped with Fe[J]. Inorganic Chemistry, 2013,52(14):8005-8009.
[20] Deviannapoorani C, Dhivya L, Ramakumar S , et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. Journal of Power Sources, 2013,240:18-25.
[21] Geng H, Chen K, Yi D , et al. Formation mechanism of Garnet-like Li7La3Zr2O12 powder prepared by solid state reaction[J]. Rare Metal Materials and Engineering, 2016,45(3):612-616.
[22] Xu Y Y( 许阳阳), Li Q G( 李全国), Liang C D( 梁成都 ), et al. Research progress of sulfide solid electrolyte[J]. Energy Storage Science and Technology( 储能科学与技术), 2016,5(5):503-512.
[23] Minami K, Mizuno F, Hayashi A , et al. Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method[J]. Solid State Ionics, 2007,178(11/12):837-841.
[24] Liu Z C, Fu W J, Payzant E A , et al. Anomalous high ionic conductivity of nanoporous beta-Li3PS4[J]. Journal of the American Chemical Society, 2013,135(3):975-978.
[25] Kanno R, Murayama M . Lithium ionic conductor thio-LISICON - The Li2S-GeS2-P2S5 system[J]. Journal of The Electrochemical Society, 2001,148(7):A742-A746.
[26] Kamaya N, Homma K, Yamakawa Y , et al. A lithium superionic conductor[J]. Nature Materials, 2011,10(9):682-686.
[27] Kuhn A, Gerbig O, Zhu C , et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014,16(28):14669-14674.
[28] Gong Y, Fu K, Xu S , et al. Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries[J]. Materials Today, 2018,21(6):594-601.
[29] Liu X T, Li Y, Yang T T , et al. High lithium ionic conductivity in the Garnet-type oxide Li7-2xLa3Zr2-xMoxO12 (x=0-0.3) ceramics by sol-gel method[J]. Journal of the American Ceramic Society, 2017,100(4):1527-1533.
[30] Gai J, Zhao E, Ma F , et al. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site[J]. Journal of the European Ceramic Society, 2018,38(4):1673-1678.
[31] Thompson T, Wolfenstine J, Allen J L , et al. Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO)[J]. Journal of Materials Chemistry A, 2014,2(33):13431-13436.
[32] Basappa R H, Ito T, Yamada H . Contact between Garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention[J]. Journal of The Electrochemical Society, 2017,164(4):666-671.
[33] Sharafi A, Haslam C G, Kerns R D , et al. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte[J]. Journal of Materials Chemistry A, 2017,5(40):21491-21504.
文章导航

/