欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

不同结构及氮掺杂NiO/rGO氧还原催化剂的制备与性能研究

  • 梁 栋 ,
  • 房恒义 ,
  • 姚 硕 ,
  • 于洁玫 ,
  • 张昭良 ,
  • 姜占坤 ,
  • 高学平 ,
  • 黄太仲
展开
  • 1. 济南大学化学化工学院,山东省氟化学化工重点实验室,山东 济南 250022; 2. 山东大学材料科学与工程学院,山东 济南 250022

收稿日期: 2018-12-20

  修回日期: 2019-01-21

  网络出版日期: 2019-02-01

Influences of Morphology and Nitrogen Doping on the Electrocatalytic Characteristics for Oxygen Reduction Reaction of NiO/rGO

  • LIANG Dong ,
  • FANG Heng-yi ,
  • YAO Shuo ,
  • YU Jie-mei ,
  • ZHANG Zhao-liang ,
  • JIANG Zhan-kun ,
  • GAO Xue-ping ,
  • HUANG Tai-zhong
Expand
  • 1. Shandong Provincial Key Laboratory of Fluorine Chemistry Material, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; 2. School of Materials Science and Engineering, Shandong University, Jinan 250061, China

Received date: 2018-12-20

  Revised date: 2019-01-21

  Online published: 2019-02-01

Supported by

Financial support for this work was provided by the Shandong Natural Science Foundation (No. ZR2018MB036 and ZR2017QB009), Science Development Project of Shandong Provincial (2017GGX40115 and 2016GGX102038), Project of Shandong Province Higher Educational Science and Technology Program (J17KA094, J13LD08), Scientific research fund of University of Jinan (XBS1644).

摘要

本文以还原氧化石墨烯(rGO)为载体制备了片状NiO/rGO和球形NiO/N-rGO结构的氧还原催化剂. 通过X-射线衍射(XRD)、Raman(拉曼)测试、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等方法表征了两种催化剂的结构和形貌. 采用循环伏安法(CV)、Tafel曲线、线性扫描伏安法(LSV)、旋转圆盘电极(RDE)和旋转环盘电极(RRDE)等技术测试研究了两种催化剂的电化学催化氧还原性能. 研究结果表明,球形NiO/N-rGO催化剂催化氧还原的峰电流密度和起始电位(0.89 V vs. RHE)与商业化的Pt/C(20%)催化剂相近. 旋转圆盘电极(RDE)和旋转环盘电极(RRDE)测试证明,在碱性电解液中NiO/rGO和NiO/N-rGO催化的氧还原反应均主要通过4?鄄电子途径反应途径发生,球形NiO/N-rGO催化剂展现出替代Pt/C基催化剂的潜力.

本文引用格式

梁 栋 , 房恒义 , 姚 硕 , 于洁玫 , 张昭良 , 姜占坤 , 高学平 , 黄太仲 . 不同结构及氮掺杂NiO/rGO氧还原催化剂的制备与性能研究[J]. 电化学, 2019 , 25(5) : 589 -600 . DOI: 10.13208/j.electrochem.181145

Abstract

In this research, the reduced graphene oxide (rGO) supported sheet-like NiO (NiO/rGO) and spherical-like NiO (NiO/N-rGO) catalysts for oxygen reduction reaction (ORR) were prepared. The structures, morphologies and chemical states of the two catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical catalytic performance of the two catalysts for ORR were investigated by cyclic voltammetry (CV), Tafel, linear sweeping voltammetry (LSV), rotating disc electrode (RDE) and rotating ring disc electrode (RRDE) tests. Electrochemical results showed that the current density and onset potential (about 0.89 V) of nitrogen doped rGO (N-rGO) supported spherical-like NiO were close to those of commercial Pt/C(20%) catalysts. RDE and RRDE data proved that the ORR happened mainly through 4-electron route in an alkaline electrolyte with both catalysts. The spherical-like NiO/N-rGO catalyst showed great promise as alternative for Pt-based catalyst.

参考文献

[1]  Service R F. Shrinking fuel cells promise power in your pocket[J]. Science, 2002, 296(5571): 1222-1224.
[2]  Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104: 4245-4270.
[3]  Ji X, Lee K T, Holden R, et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes[J]. Nature Chemistry, 2010, 2(4): 286.
[4]  Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
[5]  Rahul R, Singh R K, Neergat M. Effect of oxidative heat-treatment on electrochemical properties and oxygen reduction reaction (ORR) activity of Pd-Co alloy catalysts[J]. Journal of Electroanalytical Chemistry, 2014, 712(5): 223-229.
[6]  Ferrero G A, Fuertes A B, Sevilla M, et al. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach[J]. Carbon, 2016, 106: 179-187.
[7]  Zhu C Z, Dong S J. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction[J]. Nanoscale, 2013, 5(5): 1753-1767.
[8]  Morozan A, Jousselme B, Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy & Environmental Science, 2011, 4(4): 1238-1254.
[9]  Compton O C, Nguyen S B T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6): 711-723.
[10]  Lee W, Suzuki S, Miyayama M. Electrochemical properties of poly (anthraquinonyl sulfide)/graphene sheets composites as electrode materials for electrochemical capacitors[J]. Nanomaterials, 2014, 4(3): 599-611.
[11]  Dai L M. Graphene: tunable superdoping[J]. Nature Energy, 2016, 1(4): 16041.
[12]  Xiu L Y(修陆洋),Yu M Z(于梦舟),Yang P J(杨鹏举),et al. Caging porous Co-N-C nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2018, 24(6): 715-725.
[13]  Bayram E, Yilmaz G, Mukerjee S. A solution-based procedure for synthesis of nitrogen doped graphene as an efficient electrocatalyst for oxygen reduction reactions in acidic and alkaline electrolytes[J]. Applied Catalysis B: Environmental, 2016, 192: 26-34.
[14]  Li L, Wang M K, Cui N, et al. CeO2 doped Pt/C as an efficient cathode catalyst for an air-cathode single-chamber microbial fuel cell[J]. RSC Advances, 2016, 6(31): 25877-25881.
[15]  Yu J M, Liu Z M, Zhai L M, et al. Reduced graphene oxide supported TiO2 as high performance catalysts for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3436-3445.
[16]  Cao S Y, Han N, Han J, et al. Mesoporous hybrid shells of carbonized polyaniline/Mn2O3 as non-precious efficient oxygen reduction reaction catalyst[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6040-6050..
[17]  Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[18]  Mignuzzi S, Kumar N, Brennan B, et al. Probing individual point defects in graphene via near-field Raman scattering[J]. Nanoscale, 2015, 7(46): 19413-19418.
[19]  Wang Y R, Wei H G, Lu Y, et al. Multifunctional carbon nanostructures for advanced energy storage applications[J]. Nanomaterials, 2015, 5(2): 755-777.
[20]  Jiang M X(姜孟秀), Zhang J(张晶), Li Y H(李月华), et al. Cobalt-based nitrogen-doped carbon non-noble metal catalysts for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2017, 23(6): 627-637..
[21]  Qian X F, Li B, Hu Y Y, et al. Exploring meso-/microporous composite molecular sieves with core-shell structures[J]. Chemistry - A European Journal, 2012, 18(3): 931-939.
[22]  Guo Z Y, Jiang C C, Teng C, et al. Sulfur, trace nitrogen and iron codoped hierarchically porous carbon foams as synergistic catalysts for oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21454-21460.
[23]  Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794.
[24]  Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500.
[25]  Lee W J, Maiti U N, Lee J M, et al. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications[J]. Chemical Communications, 2014, 50(52): 6818-6830.
[26]  Wang Y, Shao Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010, 4(4): 1790-1798.
[27]  Zhou W J, Zhou J, Zhou Y C, et al. N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production[J]. Chemistry of Materials, 2015, 27(6): 2026-2032.
[28]  Zhang W Y, Wu L F, Li Z L, et al. Doped graphene: synthesis, properties and bioanalysis[J]. RSC Advances, 2015, 5(61): 49521-49533.
[29]  Peck M A, Langell M A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS[J]. Chemistry of Materials, 2012, 24(23): 4483-4490.
[30]  Byon H R, Suntivich J, Shao-Horn Y. Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid[J]. Chemistry of Materials, 2011, 23(15): 3421-3428.
[31]  Soriano L, Preda I, Gutié A, et al. Surface effects in the Ni 2p, X-ray photoemission spectra of NiO[J]. Physical Review B, 2007, 75(23): 2288-2288.
[32]  Rodríguez J L, Valenzuela M A, Poznyak T, et al. Reactivity of NiO for 2, 4-D degradation with ozone: XPS studies[J]. Journal of Hazardous Materials, 2013, 262: 472-481.
[33]  Cheng Y, Pan J, Saunders M, et al. Structurally confined ultrafine NiO nanoparticles on graphene as a highly efficient and durable electrode material for supercapacitors[J]. RSC Advances, 2016, 6(56): 51356-51366.
[34]  Wang Y L, Zhang D D, Tang M, et al. Electrocatalysis of gold nanoparticles/layered double hydroxides nanocomposites toward methanol electro-oxidation in alkaline medium[J]. Electrochimica Acta, 2010, 55(12): 4045-4049.
[35]  Huang T Z, Yu J M, Han J T, et al. Oxygen reduction catalytic characteristics of vanadium carbide and nitrogen doped vanadium carbide[J]. Journal of Power Sources, 2015, 300: 483-490.
[36]  Zecevic S K, Wainright J S, Litt M H, et al. Kinetics of O2 reduction on a Pt electrode covered with a thin film of solid polymer electrolyte[J]. Journal of the Electrochemical Society, 1998, 145(9): 3308-3311.
[37]  Zhang J T, Xia Z H, Dai L M. Carbon-based electrocatalysts for advanced energy conversion and storage[J]. Science Advances, 2015, 1(7): 362-367.
[38]  Paulus U A, Schmidt T J, Gasteiger H A, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. Journal of Electroanalytical Chemistry, 2001, 495(2): 134-145.
[39]  Chen M, Hou C J, Huo D Q, et al. An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection[J]. Biosensors and Bioelectronics, 2016, 85: 684-691.

文章导航

/