欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于CoP纳米阵列的亚硝酸根传感器的研究

  • 周福玲 ,
  • 熊小莉 ,
  • 孙旭平
展开
  • 1. 电子科技大学基础与前沿研究院, 四川 成都 610054; 2. 四川师范大学化学与材料科学学院, 四川 成都 610068

收稿日期: 2019-01-02

  修回日期: 2019-01-26

  网络出版日期: 2019-01-29

基金资助

国家自然科学基金项目(No. 21575137)资助

High-Efficiency Nitrite Sensor Based on CoP Nanowire Array

  • ZHOU Fu-ling ,
  • XIONG Xiao-li ,
  • SUN Xu-ping
Expand
  • 1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,Chengdu 610054, Sichuan, China; 2. College of Chemistry and Material Science, Sichuan Normal University,Chengdu 610068, Sichuan, China

Received date: 2019-01-02

  Revised date: 2019-01-26

  Online published: 2019-01-29

摘要

亚硝酸盐对环境和人体健康有着不利的影响,人体长期食用含大量亚硝酸盐的食物有致癌的风险,对亚硝酸盐的分析和检测是非常重要的. 开发高效的电催化剂,从而实现高灵敏度和高选择性的亚硝酸盐检测具有十分重要的意义. 作者通过先水热再低温磷化获得了磷化钴纳米阵列(CoP/TM).电化学测试结果表明,所构建的CoP/TM电极对亚硝酸盐的还原具有高效的催化作用,线性检测范围为1.0 μmol·L-1到1.0 mmol·L-1,检测下限为18 nmol·L-1(S/N=3),响应灵敏度为17781 μA·(mmol·L-1)-1·cm-2,响应时间小于3 s,选择性良好.

本文引用格式

周福玲 , 熊小莉 , 孙旭平 . 基于CoP纳米阵列的亚硝酸根传感器的研究[J]. 电化学, 2019 , 25(2) : 252 -259 . DOI: 10.13208/j.electrochem.181055

Abstract

Nitrite has a negative impact on the environment and human health. The long-term consumption of nitrite-containing foods has a carcinogenic risk. Therefore, the analysis and detection of nitrite are important. It is of great significance to develop high-efficiency electrocatalysts to achieve high sensitivity and selectivity for nitrite detection. The cobalt phosphide nano-array (CoP/TM) was obtained by hydrothermal and low-temperature phosphating. The electrochemical test results show that the constructed CoP/TM was a highly efficient electrochemical reduction nitrite catalyst with the excellent sensing performance and response time less than 3 s, as well as the linear detection range of 1.0 μmol·L-1 to 1.0 mmol·L-1 and lower detection limit of 18 nmol·L-1 (S/N = 3). The response sensitivity was 17718 μA·(mmol·L-1)-1·cm-2 with the satisfactory selectivity.

参考文献

[1]  Manea F, Remes A, Radovan C, et al. Simultaneous electrochemical determination of nitrate and nitrite in aqueous solution using Ag-doped zeolite-expanded graphite-epoxy electrode[J]. Talanta, 2010, 83(1): 66-71.
[2]  Braman R S, Hendrix S A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection[J]. Analytical Chemistry, 1989, 61(24): 2715-2718.
[3]  Guadagnini L, Tonelli D. Carbon electrodes unmodified and decorated with silver nanoparticles for the determination of nitrite, nitrate and iodate[J]. Sensors and Actuators B: Chemical, 2013, 188: 806-814.
[4]  Panchompoo J, Compton R G. Electrochemical detection of ammonia in aqueous solution using fluorescamine: comparison of fluorometric versus voltammetric analysis[J]. Journal of Electrochemistry(电化学), 2012, 18(5): 437-449.
[5]  Okafor P N, Ogbonna U I. Nitrate and nitrite contamination of water sources and fruit juices marketed in South-Eastern Nigeria[J]. Journal of Food Composition and Analysis, 2003, 16(2): 213-218.
[6]  Akyüz M, Ata S. Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography-mass spectrometry and liquid chromatography with fluorescence detection[J]. Talanta, 2009, 79(3): 900-904.
[7]  Fan Y Q(范艳群), Chen Q Y(陈庆阳), Xia J M(夏金梅 ), et al. Detection of glucosamine hydrochloride by ion chromatography with integrated pulsed amperometric detector[J]. Journal of Electrochemistry(电化学), 2014, 20(2): 164-170.
[8]  Freitas C B, Moreira R C, de Oliveira Tavares M G, et al. Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection[J]. Talanta, 2016, 147: 335-341.
[9]  Butt S B, Riaz M, Iqbal M Z. Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography[J]. Talanta, 2001, 55(4): 789-797.
[10]  Wang C Y(王春燕), Liu X Q(刘晓秋), Qi Y X(戚颖欣). Electrochemical detection of hydrogen peroxide at AuNPs modified electrode using p-hydroxyphenylboronic acid as a precursor[J]. Journal of Electrochemistry(电化学), 2016, 22(1): 88-93.
[11]  Shi P(石鹏), Wang B X(王伯轩), Song Q L(宋泉霖), et al. Application of Pd/graphene modified electrode in the detection of 4-chlorophenol[J]. Journal of Electrochemistry(电化学), 2015, 21(5): 488-495.
[12]  Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catalysis Today, 2009, 143(1/2): 94-107.
[13]  Carenco S, Portehault D, Boissiere C, et al. Nanoscaled metal borides and phosphides: recent developments and perspectives[J]. Chemical Reviews, 2013, 113(10): 7981-
8065.
[14]  Wang H J(王慧娟). Synthesis of ultrathin Co3O4 nanoflakes film material for electrochemical sensing[J]. Journal of Electrochemistry(电化学), 2016, 22(6): 631-635.
[15]  Tang C, Cheng N Y, Pu Z H, et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015, 127(32): 9483-9487.
[16]  Jiang P, Liu Q, Liang Y H, et al. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase[J]. Angewandte Chemie International Edition, 2014, 126(47): 13069-13073.
[17]  Li M X(李明轩), Ou J L(欧洁连), Chen Y X(陈燕鑫), et al. Preparation and catalytic properties of FeCo alloy nanocatalyst[J]. Journal of Electrochemistry(电化学), 2013, 19(2): 125-129.
[18]  Liu Y W, Cao X Q, Kong R M, et al. Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing[J]. Journal of Materials Chemistry B, 2017, 5(10): 1901-1904.
[19]  Tian J Q, Liu Q, Asiri A M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. Journal of the American Chemical Society, 2014, 136(21): 7587-7590.
[20]  Liu T T, Wang K Y, Du G, et al. Self-supported CoP nanosheet arrays: a non-precious metal catalyst for efficient hydrogen generation from alkaline NaBH4 solution[J]. Journal of Materials Chemistry A, 2016, 4(34): 13053-13057.
[21]  Ai L, Niu Z, Jiang J. Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting[J]. Electrochimica Acta, 2017, 242: 355-363.
[22]  Pham X H, Li C A, Han K N, et al. Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes[J]. Sensors and Actuators B: Chemical, 2014, 193: 815-822.
[23]  Radhakrishnan S, Krishnamoorthy K, Sekar C, et al. A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets[J]. Applied Catalysis B: Environmental, 2014, 148: 22-28.
[24]  Zhang D, Fang Y X, Miao Z Y, et al. Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite[J]. Electrochimica Acta, 2013, 107: 656-663.
[25]  Wang P, Mai Z B, Dai Z, et al. Construction of Au nano-particles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite[J]. Biosensors and Bioelectronics, 2009, 24(11): 3242-3247.
[26]  Shahid M M, Rameshkumar P, Pandikumar A, et al. An electrochemical sensing platform based on a reduced graphene oxide-cobalt oxide nanocube@platinum nano-
composite for nitric oxide detection[J]. Journal of Materials Chemistry A, 2015, 3(27): 14458-14468.
[27]  Ting S L, Guo C X, Leong K C, et al. Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide[J]. Electrochimica Acta, 2013, 111: 441-446.
[28]  Pandikumar A, Yusoff N, Huang N M, et al. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide[J]. Microchimica Acta, 2015, 182(5/6): 1113-1122.
[29]  Haldorai Y, Kim J Y, Vilian A T E, et al. An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite[J]. Sensors and Actuators B: Chemical, 2016, 227: 92-99.
[30]  Saravanan J, Ramasamy R, Therese H A, et al. Electrospun CuO/NiO composite nanofibers for sensitive and selective non-enzymatic nitrite sensors[J]. New Journal of Chemistry, 2017, 41(23): 14766-14771.
[31]  Lu L. Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nano-clusters doped CoO nanohybrid[J]. Sensors and Actuators B: Chemical, 2019, 281: 182-190.
[32]  Wu Y Y, Li C, Dou Z Y, et al. A novel nitrite sensor fabricated through anchoring nickel-tetrahydroxy-phthalocyanine and polyethylene oxide film onto glassy carbon electrode by a two-step covalent modification approach[J]. Journal of Solid State Electrochemistry, 2014, 18(9): 2625-2635.
[33]  Mani V, Periasamy A P, Chen S M. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode[J]. Electrochemistry Communications, 2012, 17: 75-78.

 

文章导航

/