欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

废旧金属网阴极微生物电解池产氢性能及阳极微生物群落结构分析

  • 代红艳 ,
  • 杨慧敏 ,
  • 刘 宪 ,
  • 宋秀丽 ,
  • 梁镇海
展开
  • 1. 太原学院环境科学与工程系,山西 太原 030032; 2. 太原理工大学化学化工学院,山西 太原 030024;3. 太原师范学院化学系,山西 太原 030031

收稿日期: 2018-10-10

  修回日期: 2018-11-19

  网络出版日期: 2019-12-28

基金资助

国家自然科学基金项目(No. 51703151)、山西省自然科学基金项目(No. 201601D011023)和山西省高等学校科技创新计划项目(No. 2019L1006)资助

Hydrogen Production of Microbial Electrolysis Cell Using Scrap Metal Net as Cathode and the Analysis of Microbial Community Structure in Anode

  • DAI Hong-yan ,
  • YANG Hui-min ,
  • LIU Xian ,
  • SONG Xiu-li ,
  • LIANG Zhen-hai
Expand
  • 1. Department of Environmental Science and Engineering, Taiyuan College, Taiyuan 030032, China; 2. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 3. Department of Chemistry, Taiyuan Normal University, Taiyuan 030031, China

Received date: 2018-10-10

  Revised date: 2018-11-19

  Online published: 2019-12-28

摘要

为寻找质优价廉的析氢催化剂,本研究以废旧金属网为单室微生物电解池(MEC)阴极,在不同外加电压下考察其制氢性能. 同时利用16S rDNA扩增测序技术分析原接种污泥、MFC和MEC阳极微生物的菌落特点. 实验结果表明,随着外加电压的增大,MEC产生的最大电流密度和周期运行时间分别呈现增大和缩短的趋势. 外加0.7 V电压时,废旧金属网阴极MEC的氢气产率和电能回收率分别达到0.330±0.012 m3H2·m-3·d-1和177.0±5.6%,远高于0.5 V时的数值,与0.9 V时相差不大. 废旧金属网阴极MEC的产氢能力可以和Pt/C阴极MEC相媲美,且具有良好的运行稳定性. 16S rDNA扩增测序结果显示培养环境对微生物的富集与淘汰有很大影响. 在外加电场环境中MEC阳极的优势菌落地杆菌属(Geobacter)得到很大程度富集,相对丰度高达79.4%以上.

本文引用格式

代红艳 , 杨慧敏 , 刘 宪 , 宋秀丽 , 梁镇海 . 废旧金属网阴极微生物电解池产氢性能及阳极微生物群落结构分析[J]. 电化学, 2019 , 25(6) : 773 -780 . DOI: 10.13208/j.electrochem.181010

Abstract

In order to find high quality and low price hydrogen catalyst, a scrap metal net was used as single-chamber microbial electrolytic cell (MEC) cathode, and its hydrogen production performance was investigated at different applied voltages. Meanwhile, the microbial community structures of original aerobic activated sludge, MFC and MEC anode microbes were analyzed by 16S rDNA amplicon sequencing technology. As the applied voltage increased, the maximum current density was increased and the running time was shortened. At an applied voltage of 0.7 V, the hydrogen production and electrical energy efficiency obtained with scrap metal mesh cathode MEC were, respectively, 0.330±0.012 m3H2·m-3·d-1 and 177.0±5.6%, which were much higher than those at 0.5 V, but similar to those at 0.9V. The performance of waste metal mesh cathode MEC was comparable to that of Pt/C cathode MEC, and had good durability. The results of 16S rDNA amplicon sequencing showed that the culture environment had a great influence on the enrichment and elimination of microorganisms. Geobacter, the dominant bacterium of MEC anode, was extremely enriched in the applied electric field environment with a relative abundance of more than 79.4%.

参考文献

[1]  Logan B E, Call D, Cheng S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science and Technology, 2008, 42
(23): 8630-8640.
[2]  Kundu A, Sahu J N, Redzwan G, et al. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1745-1757.
[3]  Wang A J, Liu W Z, Ren N Q, et al. Key factors affecting microbial anode potential in a microbial electrolysis cell for H2 production[J]. International Journal of Hydrogen Energy, 2010, 35(24): 13481-13487.
[4]  Freguia S, Rabaey K, Yuan Z, et al. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J]. Electrochimica Acta, 2007, 53: 598 -603.
[5]  Selembo P A, Merrill M D, Logan B E. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells[J]. Journal of Power Sources, 2009, 190(2): 271-278.
[6]  Su M, Wei L L, Qiu Z Z, et al. Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes[J]. Journal of Power Sources, 2016, 301: 29-34.
[7]  Lu L, Hou D X, Fang Y F, et al. Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells[J]. Electrochimica Acta, 2016, 206: 381-387.
[8]  Cai W W, Liu W Z, Han J L, et al. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode[J]. Biosensors and Bioelectronics, 2016, 80: 118-122.
[9]  Tokash J C, Logan B E. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells[J]. Internationnal Journal of Hydrogen Energy, 2011, 36(16): 9439-9445.
[10]  Dai H Y(代红艳), Yang H M(杨慧敏), Liu X(刘宪), et al. Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2018, 39(2): 351-358.
[11]  Dai H Y, Yang H M, Liu X, et al. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Fuel, 2016, 174: 251-256.
[12]  Harnisch F, Sievers G, Schroder U. Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions[J]. Applied Catalysis B: Environmental, 2009, 89: 455-458.
[13]  Xiao L, Wen Z H, Ci S Q, et al. Carbon/iron-based nano-rod catalysts for hydrogen production in microbial electrolysis cells[J]. Nano Energy, 2012, 1(5): 751-756.
[14]  Li F J, Liu W F, Sun Y, et al. Enhancing hydrogen production with Ni-P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells[J]. Internationnal Journal of Hydrogen Energy, 2017, 42(6): 3641-3646.
[15]  Wang A J, Liu W Z, Cheng S A, et al. Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J]. Internationnal Journal of Hydrogen Energy, 2009, 34(9): 3653-3658.
[16]  Sun R(孙睿). Hydrogen and methane production from excess sludge in MEC and the analysis of microbial structure[D]. Harbin: Harbin Institute of Technology, 2015.
[17]  Wang X C(王兴春), Yang Z R(杨致荣), Wang M(王敏), et al. High throughput sequencing technology and its application[J]. Chinese Journal of Bioengineering(中国生物工程杂志), 2012, 32(1): 109-114.
[18]  Lu L, Xing D F, Ren N Q. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research, 2012, 46(7): 2425-2434.
[19]  Wang K, Sheng Y X, Cao H B, et al. Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor[J]. Chemical Engineering Journal, 2017, 307: 150-158.
[20]  Dai H Y(代红艳). Preparation and energy generation of cathodic electron acceptors and catalysts in bio-electrochemical system[D]. Taiyuan: Taiyuan University of Technology,2017.
[21]  Sun C Y(孙彩玉). The performance of BES using waste-water treatment with energy recovery and analysis of microbial stracture[D]. Harbin: Northeast Forestry University, 2016.
[22]  Wrighton K C, Agbo P, Warnecke F, et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cell[J]. ISME Journal, 2008, 2(11): 1146-1156.
[23]  Quan X C, Quan Y P, Tao K. Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell[J]. Chemical Engineering Journal, 2012, 210: 150-156.
[24]  Logan B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381.
[25]  Laura Rago L, Yolanda Ruiz Y, Baeza J A, et al. Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production[J]. Bioelectrochemistry, 2015, 106: 359-368.
[26]  Wu B G(吴保国). Bioanode extracellular electron transfer and mechanism of enhanced current production from phenol[D]. Guangdong: South China University of Technology, 2015.

文章导航

/