欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

二维多层状Ti3C2Tx-MXene/聚吡咯纳米线复合材料的制备及电容性能研究

  • 陈 露 ,
  • 简 选 ,
  • 何 敏 ,
  • 张咪咪 ,
  • 陈晓蝶 ,
  • 高楼军 ,
  • 梁镇海
展开
  • 1. 延安大学化学与化工学院,陕西省化学反应工程重点实验室, 陕西 延安 716000; 2. 太原理工大学化学化工学院,洁净化工研究所, 山西 太原 030024

收稿日期: 2018-12-04

  修回日期: 2019-01-20

  网络出版日期: 2019-01-25

基金资助

延安大学博士科研启动基金(No. YDBK2017-28)、延安大学校级科研项目(No. YDQ2018-16)及陕西省大学生创新创业训练项目(No. 201820053)资助

Preparation and Capacitive Property of Two-Dimensional Multilayer Ti3C2Tx-MXene/PPy-NW Composite Material

  • CHEN Lu ,
  • JIAN Xuan ,
  • HE Min ,
  • ZHANG Mi-mi ,
  • CHEN Xiao-die ,
  • GAO Lou-jun ,
  • LIANG Zhen-hai
Expand
  • 1. Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an, Shaanxi Province, 716000, P. R. China; 2. Clean Chemical Research Institute, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shaanxi Provience, 030024, P. R. China

Received date: 2018-12-04

  Revised date: 2019-01-20

  Online published: 2019-01-25

摘要

本文以体相材料MAX(Ti3AlC2)为基底,采用氢氟酸刻蚀法得到二维多层状Ti3C2Tx-MXene,将一维聚吡咯纳米线(polypyrrole nanowires,PPy-NW)与二维多层状Ti3C2Tx-MXene相结合,成功地制备出Ti3C2Tx-MXene/PPy-NW复合电极材料. 并分别利用扫描电子显微镜(scanning electron microscope,SEM)、X-射线衍射(X-ray diffraction,XRD)、傅里叶变换红外光谱(fourier transform infrared spectroscopy,FTIR)及X射线光电子能谱 (X-ray photoelectron spectroscopy,XPS)对其进行了形貌和结构表征. 最后通过电化学测试表明,二维多层状Ti3C2Tx-MXene/PPy-NW复合电极材料在扫描速率为10 mV·s-1时比电容可达374 F·g-1,高于纯PPy-NW(304 F·g-1),当扫描速率增加至200 mV·s-1时,仍可保留原比电容值的72.4%,展现出良好的倍率性能. 而且在电流密度为5 A·g-1下经过2000次的循环伏安实验,其电容保持率可达91.6%,具有良好的循环稳定性. 总之,二维多层状Ti3C2Tx-MXene和一维PPy-NW的复合有效地提升了电极材料的电容性能,在电化学能源储存方面有着巨大的应用前景.

本文引用格式

陈 露 , 简 选 , 何 敏 , 张咪咪 , 陈晓蝶 , 高楼军 , 梁镇海 . 二维多层状Ti3C2Tx-MXene/聚吡咯纳米线复合材料的制备及电容性能研究[J]. 电化学, 2019 , 25(2) : 280 -287 . DOI: 10.13208/j.electrochem.181118

Abstract

In this paper, the two-dimensional multilayered Ti3C2Tx-MXene was obtained by hydrofluoric acid etching method on the bulk phase material MAX(Ti3AlC2) substrate. The two-dimensional multilayered Ti3C2Tx-MXene/PPy-NW composite electrode materials were successfully prepared by combining the one-dimensional polypyrrole nanowires (PPy-NW) with two-dimensional multilayered Ti3C2Tx-MXene. The morphologies and compositions of the synthetic materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Electrochemical tests showed that Ti3C2Tx-MXene/PPy-NW composite electrode material could reach 374 F·g-1 at a scanning rate of 10 mV·s-1, which is higher than pure PPy-NW (304 F·g-1). When the scanning rate increased to 200 mV·s-1, it could still retain 72.4 % of the original specific capacitance value, showing good multiplying performance. Finally, the Ti3C2Tx-MXene /PPy-NW composite electrode material still retained good cycling stability even at high current density of 5 A·g-1 (91.6% capacitance retention after 2000 cycles). In summary, the composite of two-dimensional multilayered Ti3C2Tx-MXene and one-dimensional PPy-NW effectively improved the capacitance performance of electrode materials, and had great application prospect in electrochemical energy storage.

参考文献

[1]  Da Y M, Liu J X, Zhou L, et al. Engineering 2D architectures toward high-performance micro-supercapacitor[J]. Advanced Materials, 2019, 31(1): 1802793-1802821.
[2]  Cai X K, Luo Y T, Liu B L, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews, 2018, 47(16): 6224-6266.
[3]  Peng L L, Fang Z W, Zhu Y, et al. Holey 2D nanomaterials for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(9): 1702179.
[4]  Huang K, Li Z J, Lin J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications[J]. Chemical Society Reviews, 2018, 47(14): 5101-
5532.
[5]  Li S L, Tsukagoshi K, Orgiu E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors[J]. Chemical Society Reviews, 2016, 45(1): 118-151.
[6]  Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.
[7]  Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.
[8]  Hu M M, Li Z J, Hu T, et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation[J]. ACS Nano, 2016, 10(12): 11344-11350.
[9]  Wang J, Tang J, Ding B, et al. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials[J]. Nature Communications, 2017, 8: 15717.
[10]  Boota M, Anasori B, Voigt C, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Advanced Materials, 2016, 28(7): 1517-1522.
[11]  Alhabed M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644.
[12]  Jian X, Li J G, Yang H M, et al. Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors[J]. Carbon, 2017, 114: 533-543.
[13]  Lei W, He P, Wang Y H, et al. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage[J]. Electrochimica Acta, 2014, 132: 112-117.
[14]  Chaudhari H K, Kelkar D S. Investigation of structure and electrical conductivity in doped polyaniline[J]. Polymer International, 2015, 42(4): 380-384.
[15]  Wei Y, Zhang X L, Wu X Y, et al. Carbon quantum dots/Ni-Al layered doble hydroxide composite for high-performance supercapacitor[J]. RSC Advances, 2016, 6(45): 39317-39322.
[16]  Fu H, Du Z J, Zou W, et al. Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode[J]. Journal of Materials Chemistry A, 2013, 1(47): 14943-14950.
[17]  Yan P T, Zhang R J, Jia J, et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte[J]. Journal of Power Sources, 2015, 284: 38-43.
[18]  Naguib M, Presser V, Lane N, et al. Synthesis of a new nanocrystalline titaniumaluminum fluoride phase by reaction of Ti2AlC3 with hydrofluoric acid[J]. RSC Advances, 2011, 1: 1493-1499.
[19]  Rakhi R B, Ahmed B, Hedhili M N, et al. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTxMXene electrodes for supercapacitor applications[J]. Chemistry of Materials, 2015, 27(15): 5314-5323.
[20]  Ghidiu M, Halim J, Kota S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene[J]. Chemistry of Materials, 2016, 28(10): 3507-3514.
[21]  Guo X, Xie X Q, Choi S, et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(24): 12445-12452.
[22]  Halim J, Cook K M, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)[J]. Applied Surface Science, 2016, 362: 406-417.

文章导航

/