欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

锂硫电池中电极过程的原位可视化研究进展

  • 郎双雁 ,
  • 胡新成 ,
  • 文 锐 ,
  • 万立骏
展开
  • 1. 中国科学院分子纳米结构与纳米技术重点实验室,北京分子科学国家研究中心, 分子科学科教融合卓越中心,中国科学院化学研究所, 北京 100190; 2. 中国科学院大学 北京 100049

收稿日期: 2018-12-14

  修回日期: 2019-01-08

  网络出版日期: 2019-01-15

In Situ/Operando Visualization of Electrode Processes in Lithium-Sulfur Batteries: A Review

  • LANG Shuang-yan ,
  • HU Xin-cheng ,
  • WEN Rui ,
  • WAN Li-jun
Expand
  • 1. Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-12-14

  Revised date: 2019-01-08

  Online published: 2019-01-15

Supported by

The authors acknowledge funding support from the National Key R&D Program of China (Grant No. 2016YFA0202500 and 2016YFB0100100), National Natural Science Fund for Excellent Young Scholars (Grant No. 21722508) and “Hundred Talents Program” from Chinese Academy of Sciences.

摘要

锂硫电池被认为是极具应用潜力的下一代能源存储器件之一. 在锂硫电池中,对电极-电解质界面物质结构和演变规律的深入探究及认知对其进一步发展至关重要. 本文结合多种原位可视化技术,包括扫描探针显微术、电子显微术、X射线以及光学显微术,概述了近年来在锂硫电池中界面成像分析的研究进展. 主要讨论了在硫正极界面、硫/硫化锂演变、多硫化物溶解以及在锂负极界面、固液界面层形成、锂沉积行为等问题,有助于理解锂硫反应的基本原理并提出优化方案.

本文引用格式

郎双雁 , 胡新成 , 文 锐 , 万立骏 . 锂硫电池中电极过程的原位可视化研究进展[J]. 电化学, 2019 , 25(2) : 141 -159 . DOI: 10.13208/j.electrochem.181048

Abstract

Lithium-sulfur (Li-S) batteries have been regarded as one of the most promising candidates for the next-generation energy storage devices. Fundamental understanding of the structure and evolution processes at electrode-electrolyte interfaces is essential to the further development. In this review, we summarize recent advances in the interfacial observations by means of various in situ/operando visualization techniques, including scanning probe microscopy (SPM), electron microscopy (EM), X-ray microscopy (XRM) and optical microscopy (OM). The real-time investigation provides important evidence for the morphology and component changes including S/Li2S transformation, polysulfide dissolution on cathodes and Li/solid electrolyte interphase (SEI) evolution on anodes, which presents reaction mechanism and design principles for Li-S battery optimization.

参考文献

[1]  Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[2]  Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186-13200.
[3]  Yu S H, Feng X R, Zhang N, et al. Understanding conversion-type electrodes for lithium rechargeable batteries[J]. Accounts of Chemical Research, 2018, 51(2): 273-281.
[4]  Agostini M, Lee D J, Scrosati B, et al. Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery[J]. Journal of Power Sources, 2014, 265: 14-19.
[5]  Ji X L, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821-9826.
[6]  Chen Y, Niu S, Lv W, et al. Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries[J]. Chinese Chemical Letters, 2019, 30(2): 521-524.
[7]  Cao R G, Xu W, Lv D P, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16): 142273.
[8]  Cheng X B, Zhang R, Zhao C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science, 2016, 3(3): 1500213.
[9]  Li W J(李文俊), Zheng J Y(郑杰允), Gu L(谷林), et al. Researches on in-situ and ex-situ characterization techniques in lithium batteries[J]. Journal of Electrochemistry(电化学), 2015, 21(2): 99-114.
[10]  Xu R, Lu J, Amine K, et al. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500408.
[11]  Zhao E Y, Nie K H, Yu X Q, et al. Advanced characterization techniques in promoting mechanism understanding for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707543.
[12]  Tan J, Liu D N, Xu X, et al. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review[J]. Nanoscale, 2017, 9(48): 19001-19016.
[13]  Zhang G, Zhang Z W, Peng H J, et al. A toolbox for lithium-sulfur battery research:Methods and protocols[J]. Small Methods, 2017, 1: 1700134
[14]  Lang S Y, Shi Y, Guo Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie-International Edition, 2016, 55(51): 15835-15839.
[15]  Lang S Y, Shi Y, Guo Y G, et al. High-temperature formation of a functional film at the cathode/electrolyte interface in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie-International Edition, 2017, 56(46): 14433-14437.
[16]  Lang S Y, Xiao R J, Gu L, et al. Interfacial mechanism in lithium-sulfur batteries: How salts mediate the structure evolution and dynamics[J]. Journal of the American Chemical Society, 2018, 140(26): 8147-8155.
[17]  Xiong S Z, Xie K, Diao Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries[J]. Electrochimica Acta, 2012, 83: 78-86.
[18]  Xu R, Belharouak I, Zhang X F, et al. Insight into sulfur reactions in Li-S Batteries[J]. ACS Applied Materials Interfaces, 2014, 6(24): 21938-21945.
[19]  Zhou W D, Wang C M, Zhang Q L, et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries[J]. Advanced Energy Material, 2015, 5(16): 1401752.
[20]  Xu Z L, Huang J Q, Chong W G, et al. In situ TEM study of volume expansion in porous carbon nanofiber/sulfur cathodes with exceptional high-rate performance[J]. Advanced Energy Materials, 2017, 7(9): 1602078.
[21]  Kim H, Lee J T, Magasinski A, et al. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes[J]. Advanced Energy Material, 2015, 5(24): 1501306.
[22] Yu W J, Liu C, Zhang L L, et al. Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles[J]. Advanced Science, 2016, 3(10): 1600113.
[23]  Yuan Y F, Tan G Q, Wen J G, et al. Encapsulating various sulfur allotropes within graphene nanocages for long-lasting lithium storage[J]. Advanced Functional Materials, 2018, 28(38): 1706443.
[24]  Tang W, Chen Z X, Tian B B, et al. In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes[J]. Journal of the American Chemical Society, 2017, 139(29): 10133-10141.
[25]  Tan G Q, Xu R, Xing Z Y, et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries[J]. Nature Energy, 2017, 2(7): 17090.
[26]  Hwa Y, Seo H K, Yuk J M, et al. Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells[J]. Nano Letters, 2017, 17(11): 7086-7094.
[27]  Yang Z Z, Zhu Z Y, Ma J, et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using in situ TEM[J]. Advanced Energy Material, 2016, 6(20): 1600806.
[28]  Qiu Y C, Rong G L, Yang J, et al. Highly nitridated graphene-Li2S cathodes with stable modulated cycles[J]. Advanced Energy Materials, 2015, 5(23): 1501369.
[29]  Luntz A C, Voss J, Reuter K, et al. Interfacial challenges in solid-state Li ion batteries[J]. Journal of Physical Chemistry Letters, 2015, 6(22): 4599-4604.
[30]  Marceau H, Kim C S, Paolella A, et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J]. Journal of Power Sources, 2016, 319: 247-254.
[31]  Mehdi B L, Qian J, Nasybulin E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM[J]. Nano Letters, 2015, 15(3): 2168-2173.
[32]  Leenheer A J, Jungjohann K L, Zavadil K R, et al. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy[J]. ACS Nano, 2015, 9(4): 4379-4389.
[33]  Kushima A, So K P, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
[34]  Orsini F, Pasquier A D, Beaudoin B, et al. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries[J]. Journal of Power Sources, 1998, 76(1): 19-29.
[35]  Aurbach D, Gofer Y, et al. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems[J]. Journal of Electrochemical Society, 1989, 136(11): 3198-3205.
[36]  Aurbach D, Gofer Y, Moshe B Z, et al. The behavior of lithium electrodes in propylene and ethylene carbonate: The major factors that influence Li cycling efficiency[J]. Journal of Electroanalytical Chemistry, 1992, 339(1/2): 451-471.  
[37]  Dolle M, Sannier L, Beaudoin B, et al. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells[J]. Electrochemical and Solid-State Letters, 2002, 5(12): A286-A289.
[38]  Sagane F, Shimokawa R, Sano H, et al. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface[J]. Journal of Power Sources, 2013, 225: 245-250.
[39]  Rong G L, Zhang X Y, Zhao W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution[J]. Advanced Materials, 2017, 29(13): 1606187.
[40]  Li Y J, Jiao J Y, Bi J P, et al. Controlled deposition of Li metal[J]. Nano Energy, 2017, 32: 241-246.
[41]  Xin S, Guo Y G, Wan L J, et al. Nanocarbon networks for advanced rechargeable lithium batteries[J]. Accounts of Chemical Research, 2012, 45(10): 1759-1769.
[42]  Yang C P, Yin Y X, Zhang S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058.
[43]  Zheng G Y, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8): 618-623.
[44]  Yan K, Lu Z D, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1(3): 16010.
[45]  Zeng Z Y, Liang W I, Liao H G, et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM[J]. Nano Letters, 2014, 14(4): 1745-1750.
[46]  Sacci R L, Dudney N J, More K L, et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communication, 2014, 50(17): 2104-2107.
[47]  Wang Z Y, Santhanagopalan D, Zhang W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3767.
[48]  Ma C, Cheng Y Q, Yin K B, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy[J]. Nano Letters, 2016, 16(11): 7030-7036.
[49]  Li Y Z, Li Y B, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
[50]  Li Y Z, Huang W, Li Y B, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177.
[51]  Nelson J, Misra S, Yang Y, et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(14): 6337-6343.
[52]  Nelson J, Yang Y, Misra S, et al. Identifying and managing radiation damage during in situ transmission X-ray microscopy of Li-ion batteries[M]. X-Ray Nanoimaging: Instruments and Methods, Proceedings of SPIE, 2013, 8851: UNSP 88510B.
[53]  Lin C N, Chen W C, Song Y F, et al. Understanding dynamics of polysulfide dissolution and re-deposition in working lithium-sulfur battery by in-operando transmission X-ray microscopy[J]. Journal of Power Sources, 2014, 263: 98-103.
[54]  Yu X Q, Pan H L, Zhou Y N, et al. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during the first cycle by in situ X-ray fluorescence microscopy[J]. Advanced Energy Materials, 2015, 5(16): 1500072.
[55]  Yu S H, Huang X, Schwarz K, et al. Direct visualization of sulfur cathodes: New insights into Li-S batteries via operando X-ray based methods[J]. Energy Environmental Science, 2018, 11(1): 202-210.
[56]  Risse S, Jafta C J, Yang Y, et al. Multidimensional operando analysis of macroscopic structure evolution in lithium sulfur cells by X-ray radiography[J]. Physical Chemistry Chemical Physics, 2016, 18(15):10630-10636.
[57]  Yang Y, Risse S, Mei S, et al. Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography[J]. Energy Storage Materials, 2017, 9: 96-104.
[58]  Yermukhambetova A, Tan C, Daemi S R, et al. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography[J]. Scientific Reports, 2016, 6: 35291.
[59]  Tan C, Daemi S R, Brett D J L, et al. Investigating the three-dimensional microstructural characteristics of lithium-sulfur electrodes with X-ray micro-tomography[J]. ECS Transactions, 2017, 77(11): 447-455.
[60]  Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2013, 13(1): 69-73.
[61]  Sun F, Dong K, Osenberg M, et al. Visualizing morphological and compositional evolution of interface of InLi-anode|thio-LISION electrolyte in all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction[J]. Journal of Materials Chemistry A, 2018, 6(45): 22489-22496.
[62]  Sun Y M, Seha Z W, Li W Y, et al. In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries[J]. Nano Energy, 2015, 11:579-586.
[63]  Osaka T, Homma T, Momma T, et al. In situ observation of lithium deposition processes in solid polymer and gel electrolytes[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 153-156. 
[64]  Howlett P C, MacFarlane D R, Hollenkamp A F, et al. A sealed optical cell for the study of lithium-electrode|electrolyte interfaces[J]. Journal of Power Sources, 2003, 114: 277-284.
[65]  Crowther O, West A C. Effect of electrolyte composition on lithium dendrite growth[J]. Journal of The Electrochemical Society, 2008, 155(11): A806-A811.  [66]  Nishikawa K, Mori T, Tetsuo Nishida, et al. In situ observation of dendrite growth of electrodeposited Li metal[J]. Journal of The Electrochemical Society, 2010, 157(11): A1212-A1217. 
[67]  Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536.
[68]  Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261: 112-119.
[69]  Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy Environmental Science, 2016, 9(10): 3221-3229.
[70]  Bai P, Guo J Z, Wang M, et al. Interactions between lithium growths and nanoporous ceramic separator[J]. Joule, 2018, 2(11): 1-16.
[71]  Li W Y, Yao H B, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6: 7436.
[72]  Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie-International Edition, 2018, 57(19): 5301-5305.
[73]  Cheng X B, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2: 258-270.
[74]  Zhang Y J, Bai W Q, Wang X L, et al. In situ confocal microscopic observation on inhibiting the dendrite formation of a-CNx/Li electrode[J]. Journal of Materials Chemistry A, 2016, 4(40): 15597-15604.
[75]  Li Q, Quan B B, Li W J, et al. Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure[J]. Nano Energy, 2018, 45: 463-470.

文章导航

/