欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

锂硫电池中电极过程的原位可视化研究进展

  • 郎双雁 ,
  • 胡新成 ,
  • 文 锐 ,
  • 万立骏
展开
  • 1. 中国科学院分子纳米结构与纳米技术重点实验室,北京分子科学国家研究中心, 分子科学科教融合卓越中心,中国科学院化学研究所, 北京 100190; 2. 中国科学院大学 北京 100049

收稿日期: 2018-12-14

  修回日期: 2019-01-08

  网络出版日期: 2019-01-15

In Situ/Operando Visualization of Electrode Processes in Lithium-Sulfur Batteries: A Review

  • LANG Shuang-yan ,
  • HU Xin-cheng ,
  • WEN Rui ,
  • WAN Li-jun
Expand
  • 1. Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-12-14

  Revised date: 2019-01-08

  Online published: 2019-01-15

Supported by

The authors acknowledge funding support from the National Key R&D Program of China (Grant No. 2016YFA0202500 and 2016YFB0100100), National Natural Science Fund for Excellent Young Scholars (Grant No. 21722508) and “Hundred Talents Program” from Chinese Academy of Sciences.

摘要

锂硫电池被认为是极具应用潜力的下一代能源存储器件之一. 在锂硫电池中,对电极-电解质界面物质结构和演变规律的深入探究及认知对其进一步发展至关重要. 本文结合多种原位可视化技术,包括扫描探针显微术、电子显微术、X射线以及光学显微术,概述了近年来在锂硫电池中界面成像分析的研究进展. 主要讨论了在硫正极界面、硫/硫化锂演变、多硫化物溶解以及在锂负极界面、固液界面层形成、锂沉积行为等问题,有助于理解锂硫反应的基本原理并提出优化方案.

本文引用格式

郎双雁 , 胡新成 , 文 锐 , 万立骏 . 锂硫电池中电极过程的原位可视化研究进展[J]. 电化学, 2019 , 25(2) : 141 -159 . DOI: 10.13208/j.electrochem.181048

Abstract

Lithium-sulfur (Li-S) batteries have been regarded as one of the most promising candidates for the next-generation energy storage devices. Fundamental understanding of the structure and evolution processes at electrode-electrolyte interfaces is essential to the further development. In this review, we summarize recent advances in the interfacial observations by means of various in situ/operando visualization techniques, including scanning probe microscopy (SPM), electron microscopy (EM), X-ray microscopy (XRM) and optical microscopy (OM). The real-time investigation provides important evidence for the morphology and component changes including S/Li2S transformation, polysulfide dissolution on cathodes and Li/solid electrolyte interphase (SEI) evolution on anodes, which presents reaction mechanism and design principles for Li-S battery optimization.
文章导航

/