欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

花球状二硫化钒的制备及其储锂研究

  • 李攀 ,
  • 刘建 ,
  • 孙维祎 ,
  • 李海霞 ,
  • 陶占良
展开
  • 南开大学化学学院, 先进能源材料化学教育部重点实验室, 天津 300071

收稿日期: 2018-12-05

  修回日期: 2019-01-15

  网络出版日期: 2019-02-28

基金资助

国家自然科学基金项目(No. 51771094)资助

Synthesis of Flower-Like Vanadium Disulfide for Lithium Storage Application

  • LI Pan ,
  • LIU Jian ,
  • SUN Wei-yi ,
  • LI Hai-xia ,
  • TAO Zhan-liang
Expand
  • Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

Received date: 2018-12-05

  Revised date: 2019-01-15

  Online published: 2019-02-28

摘要

采用一步水热法并添加表面活性剂聚乙二醇400制备出花球状二硫化钒,利用X射线粉末衍射仪、场发射扫描电子显微镜等方法对产物的物相和形貌进行了表征. 观测生长过程发现花球状二硫化钒由若干六边形二硫化钒纳米片堆叠穿插组成,该花球状结构使材料拥有较高的比表面积及出色的结构稳定性. 将花球状二硫化钒用于锂离子电池正极材料测试,结果表明花球状二硫化钒在电压区间为1 ~ 3 V,电流密度为200 mA·g-1时具有出色的循环稳定性且循环50周之后容量可达450 mAh·g-1.

本文引用格式

李攀 , 刘建 , 孙维祎 , 李海霞 , 陶占良 . 花球状二硫化钒的制备及其储锂研究[J]. 电化学, 2019 , 25(1) : 104 -111 . DOI: 10.13208/j.electrochem.180549

Abstract

In order to improve the electrochemical properties of vanadium disulfide (VS2) as an electrode material in Li-ion battery, the flower-like VS2 was prepared by a one-step hydrothermal method with the addition of polyethylene glycol 400. The phase and morphology of the product were characterized by using X-ray diffraction and field emission scanning electron microscopy. During the growth process, it was observed that the flower-like VS2 was interspersed with several hexagonal vanadium disulfide nanosheets, which had a high specific surface area and excellent structural stability. The flower-like VS2 was used for the cathode material test in lithium ion batteries. The results showed that the spheroidal VS2 had excellent cycle stability at a voltage range of 1 ~ 3 V and current density of 200 mA·g-1, while after 50 cycles the discharge capacity was 450 mAh·g-1.

参考文献

[1]  Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[2]  Yang Z G, Zhang J L, Kintner-Meyer C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
[3]  Guo Y G(郭玉国), Wang Z L(王忠丽), Wu X L(吴兴隆), et al. Nano/micro-structured electrode materials for lithium-ion batteries[J]. Journal of Electrochemistry(电化学), 2010, 16(2): 119-124.
[4]  Wang Q(王琴), Zhou L L(周丽丽), Shen C H(沈重亨), et al. Structural and dynamic studies of spinel LiNi0.5Mn1.5O4 cathode material during initial charge/discharge processes[J]. Journal of Electrochemistry(电化学), 2015, 21(4): 312-318.
[5]  Liu J Z(刘建哲), Guo P F(郭鹏飞). VS2 nanosheets: a potential anode materiral for Li-ion batteriers[J]. Journal of Inorganic Materials(无机材料学报), 2015, (12): 1339-1344.
[6]  Feng H J(冯慧杰), Zheng W J(郑文君). Synthesis of MoS2 hierarchical nanostructure and its performance for lithium-ion battery[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2018, 38(7): 1134-1139.
[7]  Sridhar V, Park H. Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors[J]. Journal of Alloys and Compounds, 2018, 732: 799-805.
[8]  Li P(李攀), Liu J(刘建), Sun W Y(孙惟祎), et al. Synthesis of coin-like vanadium disulfide and its sodium storage performance[J]. Acta Chimica Sinica(化学学报), 2018, (4): 286-291.
[9]  Jing Y, Zhou Z, Cabrera C R, et al. Metallic VS2 Monolayer: A promising 2D anode material for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25409-25413.
[10]  Fang W Y, Zhao H B, Xie Y P, et al. Facile Hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 13044-13049.
[11]  Liu Z M, Lu T C, Song T, et al. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1576-1580.
[12]  Liu X, Zhang K, Lei K X, et al. Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures[J]. Nano Research, 2016, 9(1): 198-206.
[13]  Lu Y Y, Zhao Q, Zhang N, et al. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres[J]. Advanced Functional Materials, 2016, 26(6): 911-918.
[14]  Wang W Z, Wang G H, Wang X S, et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route[J]. Advanced Materials, 2002, 14(1): 67-69.
[15]  Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453.
[16]  Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 37(23): 4248-4253.
[17]  Liu X, Shuai H L, Huang K J. A label-free electrochemical aptasensor based on leaf-like vanadium disulfide-Au nanoparticles for the sensitive and selective detection of platelet-derived growth factor BB[J]. Analytical Methods, 2015, 7(19): 8277-8284.
[18]  Zhou J H, Wang L, Yang M Y, et al. Nanosheet assembies: a universal host material for the reversible storage of alkali metal ions[J]. Advanced Materials, 2017, 29(35): 1702061.
[19]  Hu Z, Wang L X, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(47): 12794-12798.

文章导航

/