直接甲醇燃料电池(DMFC)通常采用空气中氧气作为氧化剂,但空气中硫化物、氮化物等污染物会对电池性能造成影响. 本文采用恒流放电曲线、极化曲线、循环伏安扫描(CV)和电化学阻抗谱(EIS)等方法,研究SO2对DMFC电池性能影响,分析其毒化作用机制. 研究表明,SO2毒化导致催化剂电化学活性面积(ECSA)减小,氧还原反应(ORR)电荷转移电阻增大,从而造成DMFC电池开路电压和工作电压加速衰减,峰值功率密度减小. 进一步探究了三种恢复策略,空气吹扫与I-V变载操作都只能实现电池性能的部分恢复,CV扫描可完全恢复电池性能.
Direct methanol fuel cells (DMFC) generally use oxygen as an oxidant. Contaminants such as sulfides and nitrides in the air can affect the performance of the DMFC. In this work, the effects of SO2 on the performance of DMFC were investigated and the mechanism of poisoning was analyzed, by means of constant current discharge curve, polarization performance curve, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In the CV scan, the permeated methanol was oxidized at a low potential to eliminate its effect on the SO2 poisoning behavior test. The results showed that the SO2 poisoning resulted in a decrease in the electrochemical activity surface area (ECSA) of the catalyst. Meanwhile, the EIS data indicated that the poisoning led to an increase in the charge transfer resistance of the oxygen reduction reaction (ORR). Therefore, the poison accelerated decay of the open circuit voltage and operating voltage of the DMFC, and decreased the peak power density. Further investigations of three recovery strategies, dry air purging and load-shifting I-V operations could only partially restore the performance of DMFC. However, CV scanning could accomplish the recovery more completely.
[1] Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007.
[2] Zamel N, Li X. Effect of contaminants on polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 292-329.
[3] Gould B D, Baturina O A, Swider-Lyons K E. Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS[J]. Journal of Power Sources, 2009, 188(1): 89-95.
[4] Yang D J(杨代军), Ma J X(马建新), Ma X W(马晓伟), et al. Effects of SO2 on cathode performance of proton exchange membrane fuel cell[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2007, 28(4): 731-734.
[5] U.S. Department of Energy. Effect of fuel and air impurities on PEM fuel cell performance[R]. FY 2009 Progress report for the DOE hydrogen program. Washingdon, D. C. 20585-0121. 2009, 11: 974-977.
[6] Fu J, Hou M, Du C, et al. Potential dependence of sulfur dioxide poisoning and oxidation at the cathode of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 187(1): 32-38.
[7] Fu J(傅杰), Hou M(侯明), Yu H M(俞红梅), et al. Effects of SO2 in air on the performance of proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources(电源技术), 2007, (11): 864-866+913.
[8] Zhai Y, Bethune K, Bender G, et al. Analysis of the SO2 contamination effect on the oxygen reduction reaction in PEMFCs by electrochemical impedance spectroscopy[J]. Journal of The Electrochemical Society, 2012, 159(5): B524-B530.
[9] Garsany Y, Baturina O A, Swider-Lyons K E. Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts[J]. Journal of The Electrochemical Society, 2007, 154(7): B670-B675.
[10] Imamura D, Yamaguchi E. Effect of air contaminants on electrolyte degradation in polymer electrolyte membrane fuel cells[C]. Editors. Fuller T, Uchida H, Strasser P, et al. Electrochemical Soc Inc: Pennington, Proton Exchange Membrane Fuel Cells 9, ECS Transactions, 2009, 25(1): 813-819.
[11] Zhai Y, Bender G, Bethune K, et al. Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 247: 40-48.
[12] St-Pierre J, Wetton B, Zhai Y, et al. Liquid water scavenging of PEMFC contaminants[J]. Journal of The Electrochemical Society, 2014, 161(8): E3357-E3364.
[13] Tsushima S, Kaneko K, Hirai S, Two-stage degradation of PEMFC performance due to sulfur dioxide contamination[C]. Fuller T, Uchida H, Strasser P, et al. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, Electrochemical Soc Inc: Pennington, 2010, 33(1): 1645-1652.
[14] Baturina O A, Gould B D, Korovina A, et al. Products of SO2 adsorption on fuel cell electrocatalysts by combination of sulfur K-Edge XANES and electrochemistry[J]. Langmuir, 2011, 27(24): 14930-14939.
[15] Piela P, Fields R, Zelenay P. Electrochemical impedance spectroscopy for direct methanol fuel cell diagnostics[J]. Journal of The Electrochemical Society, 2006, 153(10): A1902-A1913.
[16] Jeon M K, Won J Y, Oh K S, et al. Performance degradation study of a direct methanol fuel cell by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2007, 53(2): 447-452.
[17] Baturina O A, Swider-Lyons K E. Effect of SO2 on the performance of the cathode of a PEM Fuel Cell at 0.5-0.7 V[J]. Journal of The Electrochemical Society, 2009, 156(12): B1423-B1430.
[18] Arico A S, Srinivasan S, Antonucci V. DMFCs: From fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2): 133-161.
[19] Jens T. Mueller P M U. Characterization of direct methanol fuel cells by ac impedance spectroscopy[J]. Journal of Power Sources, 1998, 75: 139-143.
[20] Muller J T, Urban P M, Holderich W F. Impedance studies on direct methanol fuel cell anodes[J]. Journal of Power Sources, 1999, 84(2): 157-160.
[21] Du C Y, Zhao T S, Xu C. Simultaneous oxygen-reduction and methanol-oxidation reactions at the cathode of a DMFC: A model-based electrochemical impedance spectroscopy study[J]. Journal of Power Sources, 2007, 167(2): 265-271.
[22] Chen M, Du C, Yin G, et al. Numerical analysis of the electrochemical impedance spectra of the cathode of direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1522-1530.