欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

负载于刻蚀镍泡沫上钯纳米粒子作为乙醇氧化高性能电催化剂

  • 张 翅 ,
  • 李成飞 ,
  • 李高仁
展开
  • 生物无机与合成化学教育部重点实验室,广东省低碳化学与过程节能重点实验室,中山大学化学学院,广州,510275

收稿日期: 2018-11-12

  修回日期: 2018-12-20

  网络出版日期: 2019-01-10

Pd Nanoparticles Supported on the Etched Ni Foams as High-Performance Electrocatalysts for Direct Ethanol Fuel Cells

  • ZHANG Chi ,
  • LI Cheng-fei ,
  • LI Gao-ren
Expand
  • MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University,Guangzhou 510275, China

Received date: 2018-11-12

  Revised date: 2018-12-20

  Online published: 2019-01-10

Supported by

This work was supported by the National Basic Research Program of China (2015CB932304 and 2016YFA0202603), NSFC (91645104), Science and Technology Program of Guangzhou (201704030019), Natural Science Foundation of Guangdong Province (2016A010104004 and 2017A010103007), and Guangdong Science and Technology Innovation Leading Talent Fund (2016TX03N187).

摘要

发展具有高催化活性和高稳定性的非Pt阳极催化剂目前仍面临着巨大的挑战. 除了设计催化剂以外,设计合适的载体对提高电催化剂性能也具有重要意义. 在这篇论文中,作者报导了一种以混合酸(HNO3+H2SO4+H3PO4+CH3COOH) 腐蚀的镍泡沫负载Pd纳米粒子作为高性能电催化剂用于碱性条件下乙醇氧化. 因具有开放孔结构、快速电解质渗透能力及快速的电荷传输性能,这些镍泡沫负载的Pd纳米粒子显示了很好的电催化活性和循环稳定性,显示了该材料在乙醇阳极氧化具有较好的应用前景.

本文引用格式

张 翅 , 李成飞 , 李高仁 . 负载于刻蚀镍泡沫上钯纳米粒子作为乙醇氧化高性能电催化剂[J]. 电化学, 2019 , 25(5) : 571 -578 . DOI: 10.13208/j.electrochem.181144

Abstract

The development of non-Pt anode electrocatalysts with high activity and long-term durability at low cost for fuel cells still remains enormous challenge. Here we report the Pd nanoparticles supported on Ni foams etched by the mixed acids (HNO3+H2SO4+H3PO4+CH3COOH) (Pd/ME-NF) that are designed and fabricated as high-performance electrocatalysts for ethanol oxidation in alkaline media. Because of the advantages of large open space, fast electrolyte penetration/diffusion and rapid electron transfer process, the Pd/ME-NF catalysts exhibited significantly improved electrocatalytic activity and durability compared with the commercial Pd/C catalysts.

参考文献

[1]  Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature Materials, 2012, 12(1): 81-87.
[2]  Jia Y Y, Jiang Y Q, Zhang J W, et al. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets[J]. Journal of the American chemical society, 2014, 136(10): 3748-3751.
[3]  Yang H. Platinum-based electrocatalysts with core-shell nanostructures[J]. Angewandte Chemie International Edition, 2011, 50(12): 2674-2676.
[4]  Liu W, Herrmann A K, Geiger D, et al. High-performance electrocatalysis on palladium aerogels[J]. Angewandte Chemie International Edition, 2012, 51(23): 5743-5747.
[5]  Kloke A, Stetten F V, Zengerle R, et al. Strategies for the fabrication of porous platinum electrodes[J]. Advanced Materials, 2011, 23(43): 4976-5008.
[6]  Wang D, Chou H L, Lin Y C, et al. Simple replacement reaction for the preparation of ternary Fe1-xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction[J]. Journal of the American chemical society, 2012, 134: 10011-10020.
[7]  Strmcnik D, Escudero-Escribano M, Kodama K, et al. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide[J]. Nature Chemistry, 2010, 2(10): 880-885.
[8]  Debe M. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
[9]  Xia B, Wu H B, Wang X, et al. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction[J]. Journal of the American Chemical Society, 2012, 134: 13934-13937.
[10]  Huang X Q, Zhang H H, Guo C Y et al. Simplifying the creation of hollow metallic nanostructures: one-pot synthesis of hollow palladium/platinum single-crystalline nanocubes[J]. Angewandte Chemie International Edition, 2009, 48(26): 4808-4906.
[11]  Wen Z H, Cui S M, Pu H H, et al. Metal nitride/graphene nanohybrids: general synthesis and multifunctional titanium nitride/graphene electrocatalyst[J]. Advanced Materials, 2011, 23(45): 5445-5450.
[12]  Sanabria-Chinchilla J, Asazawa K, Sakamoto T, et al. Noble metal-free hydrazine fuel cell catalysts: EPOC cffect in competing chemical and electrochemical reaction pathways[J]. Journal of the American Chemical Society, 2011, 133(14): 5425-5431.
[13]  Wang S Y, Iyyamperumal E, Roy A, et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by Co-doping with boron and nitrogen[J]. Angewandte Chemie International Edition, 2011, 50(49): 11756-11760.
[14]  Wu J B, Qi L, You H J, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities[J]. Journal of the American Chemical Society, 2012, 134(29): 11880-11883.
[15]  Wang H J, Ishihara S, Ariga K, et al. All-metal layer-by-layer films: bimetallic alternate layers with accessible mesopores for enhanced electrocatalysis[J]. Journal of the American Chemical Society, 2012, 134(26): 10819-10821.
[16]  Wang A L, Xu H, Fen J X, et al. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation[J]. Journal of the American chemical society, 2013, 135(29): 10703-10709.
[17]  Wang G W, Huang B, Xiao L, et al. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells[J]. Journal of the American Chemical Society, 2014, 136(27): 9643-9649.
[18]  Gao M R, Gao Q, Jiang J, et al. A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells[J]. Angewandte Chemie International Edition, 2011, 50(21): 4905-5010.
[19]  Hong J W, Kim D, Lee Y W, et at. Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals[J]. Angewandte Chemie International Edition, 2011, 50(38): 8876-9042.
[20]  Wu H X, Li H J, Zhai Y J, et al. Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation[J]. Advanced Materials, 2012, 24(12): 1594-1597.
[21]  Mazumder V, Chi M F, Mankin M N, et al. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation[J]. Nano Letters, 2012, 12(2): 1102-1106.
[22]  Zhu C Z, Guo S J, Dong S J. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules[J]. Advanced Materials, 2012, 24(17): 2326-2331.
[23]  Han B H, Carlton E C, Kongkanand A, et. al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells[J]. Energy Environmental Science, 2014, 8(1): 258-266.
[24]  Mayrhofer K J J, Hartl K, Juhart V, et al. Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation[J]. Journal of the American Chemical Society, 2009, 131(45): 16348-16349.
[25]  Wang D L, Yu Y C, Xin H L, et at. Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts[J]. Nano Letters, 2012, 12(10): 5230-5238.
[26]  Kang Y J, Murray C B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes)[J]. Journal of the American Chemical Society, 2010, 132(22): 7568-7569.
[27]  Wanjala B N, Fang B, Luo J, et al. Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts[J]. Journal of the American Chemical Society, 2011, 133(32): 12714-12727.
[28]  Yang G W, Xu C L, Li H L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance[J]. Chemical Communications, 2008, 48: 6537-6539.
[29]  Long J, Dunn B, Rolison D R, et al. Three-dimensional battery architectures[J]. Chemical Reviews, 2004, 104(10): 4463-4492.
[30]  Chang Y H, Lin C T, Chen T Y, et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams[J]. Advanced Materials, 2013, 25(5): 756-760.
[31]  Grdeń M, Alsabet M, Jerkiewicz G. Surface science and electrochemical analysis of nickel foams[J]. ACS Applied Materials Interfaces, 2012, 4(6): 3012-3021.
[32]  Chierchie T, Mayer C, Lorenz W J. Structural changes of surface oxide layers on palladium[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 135(2), 211-220.
[33]  Poon K C, Tan D C L, Vo D T T, et al. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2014, 136(14): 5217-5220.

文章导航

/