欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

PtCu2八面体形貌调控及氧还原电催化性能研究

  • 曹龙生 ,
  • 万磊 ,
  • 邵志刚 ,
  • 俞红梅 ,
  • 侯明 ,
  • 衣宝廉
展开
  • 1. 中国科学院大连化学物理研究所, 燃料电池系统与工程研究组, 大连 116023;2. 中国科学院大学 北京 100049; 3. 清华大学化学工程系, 北京 100084

收稿日期: 2018-09-17

  修回日期: 2018-10-08

  网络出版日期: 2018-11-30

基金资助

国家重点研发计划(No. 2018YFB0105601)、国家自然科学基金(No. 21576257)以及国家自然科学基金-辽宁省联合基金(No. U1508202)资助

Morphological Control of PtCu2 Octahedron and Oxygen Reduction Electrocatalytic Performance of PtCu for Fuel Cell

  • CAO Long-sheng ,
  • WAN Lei ,
  • SHAO Zhi-gang ,
  • YU Hong-mei ,
  • HOU Ming ,
  • YI Bao-lian
Expand
  • 1. Fuel Cell System and Engineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Department of Chemcial Engineering, Tsinghua University, Beijing 100084, China

Received date: 2018-09-17

  Revised date: 2018-10-08

  Online published: 2018-11-30

摘要

利用溶剂热法,在N,N-二甲基甲酰胺(DMF)溶剂中共同还原乙酰丙酮铂(Pt(acac)2)和乙酰丙酮铜(Cu(acac)2)制备PtCu八面体合金催化剂. PtCu2八面体表现出明显的晶格收缩、较高比例的非氧化态Pt单质和较高的电子结合能,进而表现出较弱的含氧物种吸附强度和较低的d 带中心位置. 系统研究结构导向剂对PtCu合金形貌影响. 在半电池测试中,由于PtCu2具有均匀分散的规则八面体形貌结构,导致在0.9 V vs. RHE处氧还原(ORR)的质量比活性和面积比活性分别是Pt/C(JM)的6.3和27.2倍,并在加速衰减测试后其ORR的质量比活性仍达到Pt/C(JM)的4.5倍.

本文引用格式

曹龙生 , 万磊 , 邵志刚 , 俞红梅 , 侯明 , 衣宝廉 . PtCu2八面体形貌调控及氧还原电催化性能研究[J]. 电化学, 2018 , 24(6) : 697 -706 . DOI: 10.13208/j.electrochem.180848

Abstract

Platinum acetylacetonate (Pt(acac)2) and copper acetylacetonate (Cu(acac)2) were co-reduced to prepare PtCu2 octahedron alloy catalyst in N,N-dimethylformamiade by solvothermal method. The PtCu2 showed lattice compression, and high ratio of non-oxidized Pt with high electronic binding energy. All those structural features contributed to weak adsorption strength of oxygen species on Pt and lower d-band centre position. The influence of structure-directing agent on morphology of PtCu alloy was systematically studied. In the half cell test, as a result of the uniform morphology and regular octahedron of PtCu2 formed, the mass activity and area specific activity of PtCu2/C reached 6.2 and 27.2 times, respectively, relative to those of Pt/C at 0.9 V vs. RHE. Furthermore, after the accelarated degradation test, the mass activity of PtCu2/C still reached 4.5 times compared to that of Pt/C.

参考文献

[1]  Lv H F, Li D G, Strmcnik D, et al. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction[J]. Nano Energy, 2016, 29(S1): 149-165.
[2]  Lee J, Jeong B, Ocon J D. Oxygen electrocatalysis in chemical energy conversion and storage technologies[J]. Current Applied Physics, 2013, 13(2): 309-321.
[3]  Qi Y, Bian T, Choi S I, et al. Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation[J]. Chemical Communications, 2014, 50(5): 560-562.
[4]  Li J(李静), Feng X(冯欣), Wei Z D(魏子栋). Recent progress in Pt-based catalysts for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2018, 24(6): DOI: 10.13208/j.electrochem.180850.
[5]  Wang, B. Recent development of non-platinum catalysts for oxygen reduction reaction[J]. Journal of Power Sources, 2005, 152: 1-15.
[6]  Bing Y H, Liu H S, Zhang L, et al. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Chemical Society Reviews, 2010, 39(6): 2184-2202.
[7]  Li C Z, Liu T Y, He T, et al. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction[J]. Nanoscale, 2018, 10(10): 4670-4674.
[8]  Xia B Y, Wu H B, Wang X, et al. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction[J]. Journal of the American Chemical Society, 2012, 134(34): 13934-13937.
[9]  Jia Y Y, Cao Z M, Chen Q L, et al. Synthesis of composition-tunable octahedral Pt-Cu alloy nanocrystals by controlling reduction kinetics of metal precursors[J]. Science Bulletin, 2015, 60(11): 1002-1008.
[10]  Ying J, Jiang G P, Cano Z P, et al. Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2018, 236: 359-367.
[11]  Lu B A, Sheng T, Tian N, et al. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au[J]. Nano Energy, 2017, 33, 65-71.
[12]  Sun X H, Jiang K J, Zhang N, et al. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties[J]. ACS Nano, 2015, 7: 7634-7640.
[13]  Xiong Y L, Ma Y L, Lin Z Q, et al. Facile synthesis of PtCu3 alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation[J]. Cryst-EngComm, 2016, 18(40): 7823-7830.
[14]  Xia B Y, Wu H B, Wang X, et al. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties[J]. Angewandte Chemie-International Edition, 2013, 52(47): 12337-12340.
[15]  Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8): 2168-2201.
[16]  Jiang L Y, Lin X X, Wang A J, et al. Facile solvothermal synthesis of monodisperse Pt2.6Co1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions[J]. Electrochimica Acta, 2017, 225: 525-532.
[17]  Saleem F, Zhang Z C, Xu B, et al. Ultrathin Pt-Cu nano-sheets and nanocones[J]. Journal of the American Chemical Society, 2013, 135(49): 18304-18307.
[18]  Luo S P, Shen P K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis[J]. ACS Nano, 2017, 11(12): 11946-11953.
[19]  Bu L Z, Ding J B, Guo S J, et al. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts[J]. Advanced Materials, 2015, 27(44): 7204-7212.
[20]  Choi S I, Xie S F, Shao M H, et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction[J]. Nano Letters, 2013, 13(7): 3420-3425.
[21]  Zheng X, Zhang Z X, Yu D W, et al. Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply[J]. Resources, Conservation and Recycling, 2015, 105: 1-10.
[22]  Zhao X, Chen S, Fang Z C, et al. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015, 137(8): 2804-2807.
[23]  Jiang L Y, Wang A J, Li X S, et al. Facile solvothermal synthesis of Pt4Co multi-dendrites: An effective electrocatalyst for oxygen reduction and glycerol oxidation[J]. ChemElectroChem, 2017, 4(11): 2909-2914.
[24]  Cao L S, Zhang G, Lu W T, et al. Preparation of hollow PtCu nanoparticles as high-performance electrocatalysts for oxygen reduction reaction in the absence of a surfactant[J]. RSC Advances, 2016, 6(46): 39993-40001.
[25]  Bayrakceken A, Smirnova A, Kitkamthorn U, et al. Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique[J]. Journal of Power Sources, 2008, 179(2): 532-540.
[26]  Vu Thi Hong P, Tran Van M, Le My Loan P. Nanostructured platinum and carbon supported Pt-Ni catalyst for polymer electrolyte fuel cell[M]. Polymer Electrolyte Fuel Cells 14, Gasteiger H A, Uchida H, Buchi F N, et al. Eds. 2014, 64: 171-180.
[27]  Zhai J F, Huang M H, Dong S J. Electrochemical designing of Au/Pt core shell nanoparticles as nanostructured catalyst with tunable activity for oxygen reduction[J]. Electroanalysis, 2007, 19(4): 506-509.
[28]  Zhang L, Li H, Zhang J J. Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution[J]. Journal of Power Sources, 2014, 255: 242-250.
[29]  Tseng Y C, Chen H S, Liu C W, et al. The effect of alloying on the oxygen reduction reaction activity of carbon-supported PtCu and PtPd nanorods[J]. Journal of Materials Chemistry A, 2014, 2(12): 4270-4275.
[30]  Zhang G, Shao Z G, Lu W, et al. Electrochemical preparation and characterization of PdPt nanocages with improved electrocatalytic activity toward oxygen reduction reaction[J]. Electrochimica Acta, 2013, 103: 66-76.

 

文章导航

/