欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

前驱体中N含量对FeN/C催化剂氧还原活性的影响研究

  • 杨智 ,
  • 沈亚云 ,
  • 周娥 ,
  • 魏成玲 ,
  • 秦好丽 ,
  • 田娟
展开
  • 贵州师范大学化学与材料科学学院,贵州 贵阳 550000
* Tel: (86)18224801932, Email: juan_tian@126.com

收稿日期: 2018-09-23

  修回日期: 2019-02-16

  网络出版日期: 2020-02-28

基金资助

国家自然科学基金(21506041);贵州省科学技术基金(黔科合JZ字[2015]2007号);贵州省留学人员科技活动择优资助项目(黔人项目资助合同(2014)12号);贵州师范大学资助博士科研项目资助

版权

《电化学》编辑部, 2020, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Effect of Nitrogen Content in Catalyst Precursor on Activity of FeN/C Catalyst for Oxygen Reduction Reaction

  • Zhi YANG ,
  • Ya-yun SHEN ,
  • E ZHOU ,
  • Cheng-ling WEI ,
  • Hao-li QIN ,
  • Juan TIAN
Expand
  • Scchool of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550000, China

Received date: 2018-09-23

  Revised date: 2019-02-16

  Online published: 2020-02-28

Copyright

, 2020, Copyright reserved © 2020

摘要

采用热解法制备FeN/C催化剂,考察催化剂前驱体中氮含量对其氧还原活性的影响. 使用X射线衍射、比表面积和孔径分布测试、透射电子显微镜以及热重分析等方法对催化剂的结构、形貌及催化剂前驱体的热性质等进行表征,使用线性扫描伏安法对催化剂的氧还原活性进行测试. 结果表明,以1,10-菲啰啉为氮源,FeCl3为铁源,Black Pearl 2000为载体,催化剂前驱体中1,10-菲啰啉含量为20wt%,Fe含量为1wt %时,热处理制备所得催化剂粒子分布均匀,比表面积为824.48 m2·g-1,平均孔隙为10.58 nm,表面的氮元素含量为0.31wt%;并具有最好的氧还原催化活性.催化剂前驱体中氮源含量在热解过程中导致催化剂的比表面积、孔径结构及表面氮元素含量的变化是影响催化剂活性的关键因素.

本文引用格式

杨智 , 沈亚云 , 周娥 , 魏成玲 , 秦好丽 , 田娟 . 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学, 2020 , 26(1) : 130 -135 . DOI: 10.13208/j.electrochem.180923

Abstract

Non-noble metal catalysts with high activity and low cost have attracted increasing interest as potential catalysts for oxygen reduction reaction (ORR) to replace Pt-based catalysts. In this paper, the effect of nitrogen content in catalyst precursor on ORR activity of FeN/C catalyst was investigated by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) surface area and pore size distribution measurements, transmission electron microscope (TEM), thermogravimetric analysis (TGA), and rotating disk electrode (RDE) techniques. The results show that the most active catalyst was obtained by pyrolysis in argon at 1050 °C with a catalyst precursor containing 20wt% 1,10-phenanthroline, 1wt% Fe and Black Pearl 2000. The particle size and distribution, BET surface area and pore size distribution, surface nitrogen content are key factors affecting the catalytic activity of catalyst. The difference in ORR activities may be explained by TGA data of catalyst precursors with different nitrogen contents, where the pyrolysis of catalyst precursor with phen/BP ratio of 20/80 resulted in weight loss of 28.1% at the temperature above 420 °C, which may generate most of the catalytic sites for ORR.

参考文献

[1] Debe M K . Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012,486(7401):43-51.
[2] Ding W( 丁炜), Zhang X( 张雪), Li L( 李莉 ), et al. Recent progress in heteroatoms doped carbon materials as a catalyst for oxygen reduction reaction[J]. Journal of Electrochemistry( 电化学), 2014,20(5):426-438.
[3] Chen C( 陈驰), Zhang X( 张雪), Zhou Z Y( 周志有 ), et al. Experimental boosting of the oxygen reduction activity of an Fe/N/C catalyst by sulfur doping and density functional theory calculations[J]. Acta Physico-Chimica Sinica( 物理化学学报), 2017,33(9):1875-1883.
[4] Lin L ( 林玲 ). Synthesis and evaluation of PGM-free Catalysts for proton exchange membrane fuel cell cathodes[D]. He Fei(合肥): University of Science and Technology of China( 中国科学技术大学), 2017.
[5] Xia B Y, Ng W T, Wu H B , et al. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells[J]. Angewandte Chemie International Edition, 2012,51(29):7213-7216.
[6] Kong J F ( 孔建飞), Cheng W L( 程文龙 ). Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction[J]. Chinese Journal of Catalysis( 催化学报), 2017,38(6):951-969.
[7] Zhong G Y( 钟国玉), Wang H J( 王红娟), Yu H( 余皓 ), et al. A review of carbon-based non-noble catalysts for oxygen reduction reaction[J]. Acta Chimica Sinica( 化学学报), 2017,75(10):943-966.
[8] Gupta S, Tryk D, Bae I , et al. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction[J]. Journal of Applied Electrochemistry, 1989,19(1):19-27.
[9] Koslowski U I, Wurmbach I A, Fiechter S , et al. Nature of the catalytic centres of porphyrin based electrocatalysts for the ORR - A correlation of kinetic current density with the site density of Fe-N4 centres[J]. Journal of Physical Chemistry C, 2008,112(39):15356-15366.
[10] Liu Q, Liu X, Zheng L , et al. The solid phase synjournal of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2018,57(5):1204-1208.
[11] Li J, Shraboni G, Liang W , et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction[J]. Energy & Environmental Science, 2017,9(7):1-50.
[12] Wu G, More K L, Xu P , et al. A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability[J]. Chemical Communications, 2013,49(32):3291-3293.
[13] Hua Y Q, Jiang T T, Wang K , et al. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor[J]. Applied Catalysis B: Environmental, 2016,194:202-208.
[14] Wang K, Wang Y, Liang Z X , et al. Ordered mesoporous tungsten carbide/carbon composites promoted Pt catalyst with high activity and stability for methanol electrooxidation[J]. Applied Catalysis B: Environmental, 2014,147(7):518-525.
[15] Lefevre M, Proietti E, Jaouen F , et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324(5923):71-74.
[16] Liao S J( 廖世军), Pen H L( 彭洪亮), Zhang B Q( 张丙青 ). A novel n-doped carbon-based metal-free catalyst prepared and its oxygen reduction performance[J]. Journal of South China University of Technology(Natural Science Edition)( 华南理工大学学报(自然科学版)), 2012,40(10):121-127.
[17] Yang W( 杨伟), Chen S Z( 陈胜洲), Zhou H B( 邹汉波 ), et al. Progress in nitrogen-doped non-noble catalysts for oxygen reduction[J]. Chemical Industry and Engineering Progress( 化工进展), 2010,29(11):2085-2089.
[18] Bouwkamp-Wijnoltz A L, Visscher W, Van Veen J A R , et al. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ m?ssbauer study[J]. The Journal of Physical Chemistry B, 2002,106(50):12993-13001.
[19] Jaouen F, Lefevre M, Dodelet J P , et al. Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores?[J]. Journal of Physical Chemistry C, 2006,110(11):5553-5558.
[20] Charreteur F, Jaouen F, Ruggeri S , et al. Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction[J]. Electrochimica Acta, 2008,53(6):2925-2938.
[21] Zitolo A, Goellner V, Armel V , et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials[J]. Nature Materials, 2015,14(9):937-945.
文章导航

/