[1] Riedl H J, Pfleiderer G. Production of hydrogen peroxide: United States, 2215883[P/OL]. 1940-09-24. http://www.freepatentsonline.com/2215883.html.
[2] Li W, Bonakdarpour A, Gyenge E, et al. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell[J]. ChemSusChem, 2013, 6(11): 2137-2143.
[3] Wouters B, Sheng X, Boschin A, et al. The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol[J].Electrochimica Acta, 2013, 111(6): 405-410.
[4] Daems N, Sheng X, Alvarezgallego Y, et al. Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a H2-NO fuel cell[J]. Green Chemistry, 2016, 18(6): 1547-1559.
[5] Wang J H, Yuan Z L, Nie R F, et al. Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4664-4669.
[6] Li H X, Zhao Q F, Wan Y, et al. Self-assembly of mesoporous Ni-B amorphous alloy catalysts[J]. Journal of Catalysis, 2006, 244(2): 251-254.
[7] Seaman J C, And P M B, Schwallie L. In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions[J]. Environmental Science & Technology, 2012, 33(6): 938-944.
[8] Liu X J, Pan L K, Zhao Q F, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI)[J]. Chemical Engineering Journal, 2012, 183(4): 238-243.
[9] Ma H L, Zhang Y, Hu Q H, et al. Chemical reduction and removal of Cr(VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide[J]. Journal of Materials Chemistry, 2012, 22(13): 5914-5916.
[10] Testa J J, Grela M A, Litter M I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: Involvement of Cr(V) species[J]. Environmental Science & Technology, 2004, 38(5): 1589-1594.
[11] Alcaide F, Cabot P L, Brillas E. Fuel cells for chemicals and energy cogeneration[J]. Journal of Power Sources, 2006, 153(1): 47-60.
[12] Langer S H, Landi H P. Electrogenerative hydrogenation[J]. Journal of the American Chemical Society, 1963, 85(19): 3043-3044.
[13] Pan Z F, Chen R, An L, et al. Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals[J]. Journal of Power Sources, 2017, 365: 430-45.
[14] Li Y T, Yang Y, Sun Y X, et al. A novel reaction system for cogeneration of chemicals and electric energy by electrochemical reduction of nitrobenzene with iron[J]. International Journal of Electrochemical Science, 2016, 11(5): 3502-3511.
[15] Daems N, Wouters J, Van Goethem C, et al. Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals[J]. Applied Catalysis B: Environmental, 2018, 226: 509-522.
[16] Sheng X, Wouters B, Breugelmans T, et al. Pure and alloyed copper-based nanoparticles supported on activated carbon: synthesis and electrocatalytic application in the reduction of nitrobenzene[J]. ChemElectroChem, 2014, 1(7): 1198-1210.
[17] Daems N, Risplendi F, Baert K, et al. Doped ordered mesoporous carbons as novel, selective electrocatalysts for the reduction of nitrobenzene to aniline[J]. Journal of Materials Chemistry A, 2018, 6(27): 13397-13411.
[18] Yuan X Z, Ma Z F, He Q G, et al. Electro-generative hydrogenation of allyl alcohol applying PEM fuel cell reactor[J]. Electrochemistry Communications, 2003, 5(2): 189-193.
[19] Otsuka K, Sawada H, Yamanaka I. A hydrogen-nitric oxide cell for the synthesis of hydroxylamine[J]. Journal of The Electrochemical Society, 1996, 143(11): 3491-3497.
[20] Daems N, Sheng X, Alvarez-Gallego Y, et al. Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a H2-NO fuel cell[J]. Green Chemistry, 2016, 18(6): 1547-1559.
[21] Li W T, Bonakdarpour A, Gyenge E, et al. Design of bifunctional electrodes for co-generation of electrical power and hydrogen peroxide[J]. Journal of Applied Electrochemistry, 2018, 48(9): 985-993.
[22] Zhang H M, Xu W, Wu Z C, et al. Removal of Cr(VI) with cogeneration of electricity by an alkaline fuel cell reactor[J]. The Journal of Physical Chemistry C, 2013, 117(28): 14479-14484.
[23] Buzzo G S, Rodrigues A C B, De Souza R F B, et al. Synthesis of hydroquinone with co-generation of electricity from phenol aqueous solution in a proton exchange membrane fuel cell reactor[J]. Catalysis Communications, 2015, 59: 113-5.
[24] Chadderdon D J, Xin L, Qi J, et al. Selective oxidation of 1, 2-propanediol in alkaline anion-exchange membrane electrocatalytic flow reactors: Experimental and DFT investigations[J]. ACS Catalysis, 2015, 5(11): 6926-6936.
[25] Fashedemi O O, Miller H A, Marchionni A, et al. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: Functionalized MWCNT supports and impact on product selectivity[J]. Journal of Materials Chemistry A, 2015, 3(13): 7145-7156.
[26] Marchionni A, Bevilacqua M, Bianchini C, et al. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells[J]. ChemSusChem, 2013, 6(3): 518-528.
[27] Zhang Z Y, Xin L, Qi J, et al. Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst[J]. Green Chemistry, 2012, 14(8): 2150-
2152.
[28] Yamanaka I, Komabayashi K, Nishi A, et al. Partial oxidation of alkenes by a membrane catalyst utilizing fuel cell reactions[J]. Catalysis Today, 2001, 71(1/2): 189-197.
[29] Liu S, Behnamian Y, Chuang K T, et al. A-site deficient La0.2Sr0. 7TiO3-δ anode material for proton conducting ethane fuel cell to cogenerate ethylene and electricity[J]. Journal of Power Sources, 2015, 298: 23-29.
[30] Liu S B, Liu Q X, Fu X Z, et al. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles[J]. Applied Catalysis B: Environmental,2018, 220: 283-289.
[31] Aguilar L, Zha S W, Cheng Z, et al. A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels[J]. Journal of Power Sources, 2004, 135(1/2): 17-24.
[32] Shao Z P, Zhang C M, Wang W, et al. Electric power and synthesis gas co-generation from methane with zero waste gas emission[J]. Angewandte Chemie International Edition, 2011, 50(8): 1792-1797.
[33] Lee S P, Chen Y W. Nitrobenzene hydrogenation on Ni-P, Ni-B and Ni-P-B ultrafine materials[J]. Journal of Molecular Catalysis A: Chemical, 2000, 152(1/2): 213-223.
[34] Xia S, Wouters B, Breugelmans T, et al. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene[J]. Applied Catalysis B: Environmental, 2014, 147(14): 330-339.
[35] Fonocho R, Gardner C L, Ternan M. A study of the electrochemical hydrogenation of o-xylene in a PEM hydrogenation reactor[J]. Electrochimica Acta, 2012, 75(4): 171-
178.
[36] Otsuka K, Sawada H, Yamanaka I. A hydrogen-nitric oxide cell for the synthesis of hydroxylamine[J]. Journal of The Electrochemical Society, 1996, 143(11): 3491-3496.
[37] Alvarez-Gallego Y, Dominguez-Benetton X, Pant D, et al. Development of gas diffusion electrodes for cogeneration of chemicals and electricity[J]. Electrochimica Acta, 2012, 82(21): 415-426.
[38] Foral M J, Langer S H. Sulfur coverage effects on the reduction of dilute nitric oxide at platinum black gas diffusion electrodes[J]. Electrochimica Acta, 1991, 36(2): 299-
307.
[39] Yamanaka I, Hashimoto T, Ichihashi R, et al. Direct synthesis of HO acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H/O fuel cell[J]. Electrochimica Acta, 2008, 53(14): 4824-4832.
[40] Tsou T C, Lin R J, Yang J L. Mutational spectrum induced by chromium(iii) in shuttle vectors replicated in human cells: Relationship to Cr(III)-DNA interactions[J]. Chemical Research in Toxicology, 1997, 10(9): 962-970.
[41] James B R. Peer Reviewed: The challenge of remediating chromium-contaminated soil[J]. Environmental Science & Technology, 1996, 30(6): A248-A251.
[42] Zhang H M, Xu W, Wu Z C, et al. Removal of Cr(VI) with cogeneration of electricity by an alkaline fuel cell reactor[J]. Journal of Physical Chemistry C, 2013, 117(28): 14479-14484.
[43] Farr R D, Vayenas C G. Ammonia high temperature solid electrolyte fuel cell[J]. Journal of The Electrochemical Society, 1980, 127(7): 1478-1483.
[44] Mckenna E, Stoukides M. Modeling of HCN synthesis in a solid electrolyte fuel cell[J]. Chemical Engineering Science, 1992, 47(9-11): 2951-296.
[45] Aguilar L, Zha S W, Cheng Z, et al. A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels[J]. Journal of Power Sources, 2004, 135(1): 17-24.
[46] Yamanaka I, Hasegawa S, Otsuka K. Partial oxidation of light alkanes by reductive activated oxygen over the (Pd-black+ VO(acac)2/VGCF) cathode of H2-O2 cell system at 298 K[J]. Applied Catalysis A: General, 2002, 226(1/2): 305-315.
[47] Yamanaka I, Nabae Y, Otsuka K. Electrochemical studies of the alkene-NOx fuel cell for organic synthesis[J]. Journal of The Electrochemical Society, 2003, 150(7): D129-D133.
[48] Bianchini C, Bambagioni V, Filippi J, et al. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells[J]. Electrochemistry Communications, 2009, 11(5): 1077-1080.
[49] Bambagioni V, Bianchini C, Marchionni A, et al. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol= methanol, ethanol, glycerol)[J]. Journal of Power Sources, 2009, 190(2): 241-251.
[50] Matsuoka K, Iriyama Y, Abe T, et al. Alkaline direct alcohol fuel cells using an anion exchange membrane[J]. Journal of Power Sources, 2005, 150: 27-31.
[51] Chadderdon D J, Xin L, Qi J, et al. Selective oxidation of 1,2-propanediol in alkaline anion-exchange membrane electrocatalytic flow reactors: Experimental and DFT investigations[J]. ACS Catalysis, 2015, 5(11): 6926-6936.
[52] Wang W, Su C, Wu Y Z, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chemical Reviews, 2013, 113(10): 8104-8151.
[53] Ertl G, Knözinger H, Schüth F, et al. (Editors). Handbook of heterogeneous catalysis[M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2008: 3384-3400.
[54] Bañares M A. Supported metal oxide and other catalysts for ethane conversion: A review[J]. Catalysis Today, 1999, 51(2): 319-348.
[55] Yamanaka I, Nishi A, Otsuka K. Selective synthesis of MeCHO by C2H4-(O2+ NO) cell system[J]. Chemical Communications, 1998, 19: 2105-2106.
[56] Otsuka K, Ishizuka K, Yamanaka I, et al. The selective oxidation of toluene to benzaldehyde applying a fuel cell system in the gas phase[J]. Journal of The Electrochemical Society, 1991, 138(11): 3176-3182.
[57] Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells: A critical review[J]. Chemical Society Reviews, 2010, 39(11): 4355-
4369.
[58] Fu X Z, Lin J Y, Xu S, et al. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode[J]. Physical Chemistry Chemical Physics, 2011, 13(43): 19615-19623.
[59] Wang S, Luo J L, Sanger A R, et al. Performance of ethane/oxygen fuel cells using yttrium-doped barium cerate as electrolyte at intermediate temperatures[J]. The Journal of Physical Chemistry C, 2007, 111(13): 5069-5074.
[60] Liu S, Chuang K T, Luo J L. Double-layered perovskite anode with in situ exsolution of a Co-Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell[J]. ACS Catalysis, 2015, 6(2): 760-768.
[61] Lin J Y, Shao L, Si F Z, et al. CO2CrO4 nanopowders as an anode catalyst for simultaneous conversion of ethane to ethylene and power in proton-conducting fuel cell reactors[J]. The Journal of Physical Chemistry C, 2018, 122(8): 4165-4171.
[62] Yentekakis I, Vayenas C. Chemical cogeneration in solid electrolyte cells the oxidation of to SO2[J]. Journal of The Electrochemical Society, 1989, 136(4): 996-1002.
[63] Trembly J P, Marquez A I, Ohrn T R, et al. Effects of coal syngas and H2S on the performance of solid oxide fuel cells: Single-cell tests[J]. Journal of Power Sources, 2006, 158(1): 263-273.
[64] Aguilar L, Zha S, Li S, et al. Sulfur-tolerant materials for the hydrogen sulfide SOFC[J]. Electrochemical and Solid-State Letters, 2004, 7(10): A324-A326.
[65] Chen H T, Choi Y, Liu M, et al. A first-principles analysis for sulfur tolerance of CeO2 in solid oxide fuel cells[J]. The Journal of Physical Chemistry C, 2007, 111(29): 11117-11122.
[66] Vincent A L, Luo J L, Chuang K T, et al. Promotion of activation of CH4 by H2S in oxidation of sour gas over sulfur tolerant SOFC anode catalysts[J]. Applied Catalysis B: Environmental, 2011, 106(1/2): 114-122.
[67] Yuan X Z, Ma Z F, Jiang Q Z, et al. Cogeneration of cyclohexylamine and electrical power using PEM fuel cell reactor[J]. Electrochemistry Communications, 2001, 3(11): 599-602.
[68] Doucet R, Gardner C L, Ternan M. Separation of hydrogen from hydrogen/ethylene mixtures using PEM fuel cell technology[J]. International Journal of Hydrogen Energy, 2009, 34(2): 998-1007.
[69] Deng X(邓 昕), Chen H Q(陈亨权), Hu Y(胡 野),et al. Recent progress for Fe-N-C electrocatalysts in alkaline fuel cells[J]. Journal of Electrochemistry(电化学), 2018, 24(3): 235-245.
[70] Li L(李莉), Chen S G(陈四国), Qi X Q(齐学强), et al. Electrocatalysis in polymer electrolyte membrane fuel cells[J]. Journal of Electrochemistry(电化学), 2009, 15(4): 403-411.
[71] Kellegoz M, Ozkan I. Effects of NafionR content in the electrodes on the performance of a single proton exchange membrane fuel cell[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2016, 10(3): 3-4.
[72] Kellegoz M, Ozkan I, Kilickaya M S. Performance effects of proton exchange membrane fuel cell at various operating temperatures[J]. Journal of Optoelectronics & Advanced Materials, 2008, 10(2): 369-372.
[73] Sedighi S, Gardner C L. A kinetic study of the electrochemical hydrogenation of ethylene[J]. Electrochimica Acta, 2010, 55(5): 1701-1708.
[74] Chen W, He G H, Ge F L, et al. Effects of hydrophobicity of diffusion layer on the electroreduction of biomass derivatives in polymer electrolyte membrane reactors[J]. ChemSusChem, 2015, 8(2): 288-300.
[75] Villaluenga J P G, Barragán V M, Seoane B, et al. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane[J]. Electrochimica Acta, 2006, 51(28): 6297-6303.
[76] Park S, Lee H, Shin S H, et al. Increasing the durability of polymer electrolyte membranes using organic additives[J]. ACS Omega, 2018, 3(9): 11262-11269.
[77] Sombatmankhong K, Yunus K, Fisher A C. Electrocogeneration of hydrogen peroxide: Confocal and potentiostatic investigations of hydrogen peroxide formation in a direct methanol fuel cell[J]. Journal of Power Sources, 2013, 240: 219-231.
[78] Itoh N, Aketa M, Sato T, et al. Regeneration of anti-oxidant in lubrication oil on bifunctional palladium membrane electrode[J]. Journal of the Japan Petroleum Institute, 2012, 55(3): 215-218.
[79] Wouters B, Hereijgers J, Malsche W D, et al. Electrochemical characterisation of a microfluidic reactor for cogeneration of chemicals and electricity[J]. Electrochimica Acta, 2016, 210: 337-345.
[80] Kandemir T, Schuster M E, Senyshyn A, et al. The Haber-Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions[J]. Angewandte Chemie International Edition, 2013, 52(48): 12723-12726.
[81] Milton R D, Cai R, Abdellaoui S, et al. Bioelectrochemical haber-bosch process: An ammonia-producing H2/N2 fuel cell[J]. Angewandte Chemie International Edition, 2017, 56(10): 2680-2683.