基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的抗团聚高效氧还原电催化剂
收稿日期: 2018-09-17
修回日期: 2018-10-01
网络出版日期: 2018-11-06
基金资助
国家自然科学基金优秀青年基金(No. 51522203)及面上项目(No. 51772040)、霍英东青年教师基金(No. 151047)与中央高校基本科研业务费(No. DUT18LAB19)资助
Caging Porous Co-N-C Nanocomposites in 3D Graphene as Active and Aggregation-Resistant electrocatalyst for Oxygen Reduction Reaction
Received date: 2018-09-17
Revised date: 2018-10-01
Online published: 2018-11-06
关键词: 氧还原反应;电催化剂;钴/氮掺杂碳; 三维石墨烯;喷雾干燥
修陆洋 , 于梦舟 , 杨鹏举 , 王治宇 , 邱介山 . 基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的抗团聚高效氧还原电催化剂[J]. 电化学, 2018 , 24(6) : 715 -725 . DOI: 10.13208/j.electrochem.180847
[1] Wang H T, Lee H W, Deng Y, et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting[J]. Nature Communications, 2015, 6: 7261.
[2] Symes M D, Cronin L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013, 5(5): 403-409.
[3] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107): 63-66.
[4] Park J, Risch M, Nam G, et al. Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn-air batteries[J]. Energy & Environmental Science, 2017, 10(1): 129-136.
[5] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550.
[6] Zhao C Y(赵灿云), Huang L(黄林), You Y(尤勇), et al. Recycling MF solid waste into mesoporous nitrogen-doped carbon with iron carbide complex in graphitic layers as an efficient catalyst for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 176-184.
[7] Chen C(陈驰), Zhou Z Y(周志有), Zhang X S(张新胜), et al. Synthesis of Fe, N-doped graphene/carbon black composite with high catalytic activity for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(1): 25-31.
[8] Chen G Y, Bare S R, Mallouk T E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells[J]. Journal of The Electrochemical Society, 2002, 149(8): A1092-A1099.
[9] Hu C G, Dai L M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angewandte Chemie International Edition, 2016, 55(39): 11736-11758.
[10] Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Accounts of Chemical Research, 2013, 46(8): 1878-1889.
[11] Jung J I, Jeong H Y, Lee J S, et al. A bifunctional perovskite catalyst for oxygen reduction and evolution[J]. Angewandte Chemie International Edition, 2014, 53(18): 4582-4586.
[12] Masa J, Xia W, Muhler M, et al. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction[J]. Angewandte Chemie International Edition, 2015, 54(35): 10102-10120.
[13] Zeng M, Liu Y, Zhao F, et al. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries[J]. Advanced Functional Materials, 2016, 26(24): 4397-4404.
[14] Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.
[15] Xu P, Chen W, Wang Q, et al. Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction[J]. RSC Advances, 2015, 5(8): 6195-6206.
[16] Zhou W W, Zhu J X, Cheng C W, et al. A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage[J]. Energy & Environmental Science, 2011, 4(12): 4954-4961.
[17] Chen Y Z, Wang C, Wu Z Y, et al. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials, 2015, 27(34): 5010-5016.
[18] Li Q, Xu P, Gao W, et al. Graphene/graphene-tube nano-composites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries[J]. Advanced Materials, 2014, 26(9): 1378-1386.
[19] Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie International Edition, 2016, 55(36): 10800-10805.
[20] Liu S H, Wang Z Y, Zhou S, et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Advanced Materials, 2017, 29(31): 1700874.
[21] Yu G L, Sun J, Muhammad F, et al. Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene[J]. Rsc Advances, 2014, 4(73): 38804-38811.
[22] Chai G L, Hou Z, Shu D J, et al. Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: Stone-wales defect and curvature effect[J]. Journal of the American Chemical Society, 2014, 136(39): 13629-13640.
[23] Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
[24] Goubert-Renaudin S N S,Wieckowski A. Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature[J]. Journal of Electroanalytical Chemistry, 2011, 652(1/2): 44-51.
[25] Mao S, Wen Z, Huang T, et al. High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions[J]. Energy & Environmental Science, 2014, 7(2): 609-616.
[26] Hou Y, Huang T, Wen Z, et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions[J]. Advanced Energy Materials, 2014, 4(11): 1400337.
/
〈 |
|
〉 |