欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的抗团聚高效氧还原电催化剂

  • 修陆洋 ,
  • 于梦舟 ,
  • 杨鹏举 ,
  • 王治宇 ,
  • 邱介山
展开
  • 精细化工国家重点实验室,辽宁省能源材料化工重点实验室,大连理工大学化工学院,甘井子区凌工路2号,大连,116024

收稿日期: 2018-09-17

  修回日期: 2018-10-01

  网络出版日期: 2018-11-06

基金资助

国家自然科学基金优秀青年基金(No. 51522203)及面上项目(No. 51772040)、霍英东青年教师基金(No. 151047)与中央高校基本科研业务费(No. DUT18LAB19)资助

Caging Porous Co-N-C Nanocomposites in 3D Graphene as Active and Aggregation-Resistant electrocatalyst for Oxygen Reduction Reaction

  • XIU Lu-yang ,
  • YU Meng-zhou ,
  • YANG Peng-ju ,
  • WANG Zhi-yu ,
  • QIU Jie-shan
Expand
  • State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, Carbon Research Laboratory, Dalian University of Technology, Dalian 116024, China

Received date: 2018-09-17

  Revised date: 2018-10-01

  Online published: 2018-11-06

摘要

氧还原反应是决定燃料电池、金属-空气电池等多种新型清洁能源存储与转化技术之性能与应用的关键反应. 铂及其合金是目前催化活性最好的氧还原反应催化剂,但其高昂的成本限制了规模化应用. 在小尺寸效应作用下,微纳米结构催化剂颗粒在电极制备与电化学反应过程中的团聚限制了催化剂本征催化活性的充分发挥. 本文基于喷雾热解技术,发展了一种基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的高活性、抗团聚非贵金属氧还原反应催化剂. 此结构中,金属有机骨架化合物ZIF-67衍生的钴/氮掺杂多孔碳纳米结构是催化氧还原反应的活性中心,包覆其外的三维石墨烯笼不仅可在钴/氮掺杂碳纳米结构之间构建连续的三维载流子传导网络,且可高效抑制其在催化剂制备与电化学反应过程中的团聚与活性损失. 在碱性电解液中,此类非贵金属催化剂表现出可与铂基催化剂媲美的氧还原反应活性和优异的稳定性.

本文引用格式

修陆洋 , 于梦舟 , 杨鹏举 , 王治宇 , 邱介山 . 基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的抗团聚高效氧还原电催化剂[J]. 电化学, 2018 , 24(6) : 715 -725 . DOI: 10.13208/j.electrochem.180847

Abstract

Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability. During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts. We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 nanoparticles and graphene oxide, followed by annealing. The 3D graphene cages around Co-N-C nanocomposites not only provide a continuous conductive network for charge transfer, but also prevent the active phase from aggregation during electrode manufacturing and electrochemical reactions. When evaluated as an ORR electrocatalyst, the material exhibited comparable activity but superior stability to commercial Pt/C catalyst in an alkaline electrolyte.

参考文献

[1]  Wang H T, Lee H W, Deng Y, et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting[J]. Nature Communications, 2015, 6: 7261.
[2]  Symes M D, Cronin L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013, 5(5): 403-409.
[3]  Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107): 63-66.
[4]  Park J, Risch M, Nam G, et al. Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn-air batteries[J]. Energy & Environmental Science, 2017, 10(1): 129-136.
[5]  Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550.
[6]  Zhao C Y(赵灿云), Huang L(黄林), You Y(尤勇), et al. Recycling MF solid waste into mesoporous nitrogen-doped carbon with iron carbide complex in graphitic layers as an efficient catalyst for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 176-184.
[7]  Chen C(陈驰), Zhou Z Y(周志有), Zhang X S(张新胜), et al. Synthesis of Fe, N-doped graphene/carbon black composite with high catalytic activity for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(1): 25-31.
[8]  Chen G Y, Bare S R, Mallouk T E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells[J]. Journal of The Electrochemical Society, 2002, 149(8): A1092-A1099.
[9]  Hu C G, Dai L M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angewandte Chemie International Edition, 2016, 55(39): 11736-11758.
[10]  Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Accounts of Chemical Research, 2013, 46(8): 1878-1889.
[11]  Jung J I, Jeong H Y, Lee J S, et al. A bifunctional perovskite catalyst for oxygen reduction and evolution[J]. Angewandte Chemie International Edition, 2014, 53(18): 4582-4586.
[12]  Masa J, Xia W, Muhler M, et al. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction[J]. Angewandte Chemie International Edition, 2015, 54(35): 10102-10120.
[13]  Zeng M, Liu Y, Zhao F, et al. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries[J]. Advanced Functional Materials, 2016, 26(24): 4397-4404.
[14]  Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.
[15]  Xu P, Chen W, Wang Q, et al. Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction[J]. RSC Advances, 2015, 5(8): 6195-6206.
[16]  Zhou W W, Zhu J X, Cheng C W, et al. A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage[J]. Energy & Environmental Science, 2011, 4(12): 4954-4961.
[17]  Chen Y Z, Wang C, Wu Z Y, et al. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials, 2015, 27(34): 5010-5016.
[18]  Li Q, Xu P, Gao W, et al. Graphene/graphene-tube nano-composites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries[J]. Advanced Materials, 2014, 26(9): 1378-1386.
[19]  Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie International Edition, 2016, 55(36): 10800-10805.
[20]  Liu S H, Wang Z Y, Zhou S, et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Advanced Materials, 2017, 29(31): 1700874.
[21]  Yu G L, Sun J, Muhammad F, et al. Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene[J]. Rsc Advances, 2014, 4(73): 38804-38811.
[22]  Chai G L, Hou Z, Shu D J, et al. Active sites and mechanisms for oxygen reduction reaction on nitrogen-doped carbon alloy catalysts: Stone-wales defect and curvature effect[J]. Journal of the American Chemical Society, 2014, 136(39): 13629-13640.
[23]  Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
[24]  Goubert-Renaudin S N S,Wieckowski A. Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature[J]. Journal of Electroanalytical Chemistry, 2011, 652(1/2): 44-51.
[25]  Mao S, Wen Z, Huang T, et al. High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions[J]. Energy & Environmental Science, 2014, 7(2): 609-616.
[26]  Hou Y, Huang T, Wen Z, et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions[J]. Advanced Energy Materials, 2014, 4(11): 1400337.

文章导航

/