欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学获奖人优秀论文专辑

Au(111)/咪唑基离子液体界面结构研究:阳离子侧链长度的影响

  • 陈莉 ,
  • 刘帅 ,
  • 李棉刚 ,
  • 苏建加 ,
  • 颜佳伟 ,
  • 毛秉伟
展开
  • 厦门大学化学化工学院,固体表面物理化学国家重点实验室,福建 厦门 361005

收稿日期: 2018-07-21

  修回日期: 2018-08-30

  网络出版日期: 2020-12-28

基金资助

国家自然科学基金项目(No. 21673193)和福建省自然科学基金项目(No. 2016J01075)资助

An Investigation on the Structure of Au(111)/Imidazolium-Based Ionic Liquid Interface: Effect of Alkyl Side Chain Length

  • CHEN Li ,
  • LIU Shuai ,
  • LI Mian-gang ,
  • Su Jian-jia ,
  • YAN Jia-wei ,
  • MAO Bing-wei
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2018-07-21

  Revised date: 2018-08-30

  Online published: 2020-12-28

摘要

本文结合电化学方法与原子力显微镜力曲线技术,研究了两种烷基侧链长度不同的离子液体BMITFSA和OMITFSA在Au(111)电极表面附近的层状结构的数目和耐受力对电位的依赖性,探究了烷基侧链长度变化对界面层状结构的影响. 研究表明,不同烷基侧链长度的离子液体体系力-电位曲线形状基本相似. 在零电荷电位(the potential of zero charge,PZC)附近时,力值最小,因为此时电极表面荷电量较小,层状结构不稳定;电位偏离PZC的过程中,第一层层状结构力值呈现先增大后减小的趋势. 受到烷基侧链所处的不同位置影响,在PZC电位以负,短侧链离子液体的层状结构稳定性较好,而PZC电位以正,长侧链离子液体的稳定性较好.

本文引用格式

陈莉 , 刘帅 , 李棉刚 , 苏建加 , 颜佳伟 , 毛秉伟 . Au(111)/咪唑基离子液体界面结构研究:阳离子侧链长度的影响[J]. 电化学, 2018 , 24(5) : 511 -516 . DOI: 10.13208/j.electrochem.180148

Abstract

In this work, we comparatively investigated the interfacial structures at Au(111) electrode surfaces in two ionic liquids (ILs) with different alkyl chain lengths by combining AFM force curve technique and electrochemical methods. The number and stability of the layering structures, and their potential-dependency were analyzed. The experimental results indicated that the tendencies of force-potential curves in the two ILs behave the same way. At potentials close to PZC, the ions arrange loosely, which lowers the stability of the layering structure. As the potential shifting away from PZC, more ions attach to electrode surface, which increases the stability of layering structure, while further increase of the ions will weaken the stability because of the lattice saturation of ions. However, the location of the alkyl chain at potentials negative to the PZC differs from that at potentials positive to the PZC, leading to an adverse effect on the stability at negatively charged surface and a synergistic effect on the stability at positively charged surface, respectively.

参考文献

[1]  Endres F. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors[J]. Chemphyschem, 2002, 3(2): 145-154.
[2]  Buzzeo M C, Evans R G, Compton R G, et al. Nonhaloaluminate roomtemperature ionic liquids in electrochemistry-a review[J]. ChemPhysChem, 2004, 5(8): 1106-1120.
[3]  Kornyshev A A. Double-layer in ionic liquids: Paradigm change?[J]. Journal of Physical Chemistry B, 2007, 111(20): 5545-5557.
[4]  Kornyshev A A, Qiao R. Three-dimensional double layers[J]. Journal of Physical Chemistry C, 2014, 118(32): 18285-18290.
[5]  Kubo K, Hirai N, Tanaka T, et al. In situ observation on Au(100) surface in molten EMImBF4 by electrochemical atomic forceicroscopy (EC-AFM)[J]. Surface Science Letters, 2003, 546(1): L785-L788.
[6]  Li H, Wood R J, Endres F, et al. Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential[J]. Journal of Physics Condensed Matter, 2014, 26(28): 284115.
[7]  Peng J(彭瑾),Li M G(李棉刚),Xie L Q(谢立强),et al. An STM study on the structure of Pt(100)/ionic liquid OMIPF6 interface[J]. Journal of Electrochemistry(电化学), 2016, 22(6): 596-601.
[8]  And R A, Warr G G. Structure in confined room-temperature ionic liquids[J]. Journal of Physical Chemistry C, 2007, 111(13): 5162-5168.
[9]  Atkin R, El Abedin S Z, Hayes R, et al. AFM and STM studies on the surface interaction of BMPTFSA and EMImTFSA ionic liquids with Au(111)[J]. Journal of Physical Chemistry C, 2009, 113(30): 13266-13272.
[10]  Yokota Y, Harada T, Fukui K I, et al. Direct observation of layered structures at ionic liquid/solid interfaces by using frequency-modulation atomic force microscopy[J]. Chemical Communications, 2010, 46(46): 8627-8629.
[11]  Hayes R, Borisenko N, Tam M K, et al. Double layer structure of ionic liquids at the Au(111) electrode interface: An atomic force microscopy investigation[J]. Journal of Physical Chemistry C, 2011, 115(14): 6855-6863.
[12]  Endres F, Borisenko N, El Abedin S Z, et al. The interface ionic liquid(s)/electrode(s): In situ STM and AFM measurements[J]. Faraday Discussions, 2012, 154(20): 221-233.
[13]  Li H, Endres F, Atkin R, et al. Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)-ionic liquid interface as a function of potential[J]. Physical Chemistry Chemical Physics, 2013.15(35): 14624-14633.
[14]  Zhang X, Zhong Y X, Yan J W, et al. Probing double layer structures of Au(111)-BMIPF6 ionic liquid interfaces from potential-dependent AFM force curves[J]. Chemical Communications, 2012, 48(4): 582-584.
[15]  Zhong Y X, Yan J W, Li M G, et al. Resolving fine structures of the electric double layer of electrochemical interfaces in ionic liquids with an AFM tip modification strategy[J]. Journal of the American Chemical Society, 2014, 136(42): 14682-14685.
[16]  Zhang X(张笑), Zhong Y X(钟赟鑫), Yan J W(颜佳伟), et al. In-situ AFM force curve investigations on layered structures of Au(111)-ionic liquid interfaces and temperature dependence[J]. Journal of Electrochemistry(电化学), 2014, 20(4): 295-301.
[17]  Zhong Y, Yan J W, Li M G, et al. The Electric double layer in an ionic liquid incorporated with water molecules: Atomic force microscopy force curve study[J]. ChemElectroChem, 2016, 3(12): 2221-2226.
[18]  Gnahm M, Pajkossy T, Kolb D M, et al. The interface between Au(111) and an ionic liquid[J]. Electrochimica Acta, 2010, 55(21): 6212-6217.
文章导航

/