欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

Pt-Cu合金纳米枝晶的合成及其氧还原催化性能

  • 罗柳轩 ,
  • 魏光华 ,
  • 沈水云 ,
  • 朱凤鹃 ,
  • 柯长春 ,
  • 闫晓晖 ,
  • 章俊良
展开
  • 1. 上海交通大学动力与机械工程学院燃料电池研究所,动力机械与工程教育部重点实验室,上海 200240; 2. 上海交通大学巴黎高科卓越工程师学院,上海 200240

收稿日期: 2018-09-28

  修回日期: 2018-10-15

  网络出版日期: 2018-10-29

基金资助

获国家重点研发项目(No. 2016YFB0101201)和国家自然科学基金项目(No. 21533005, No. 21503134)资助

Facile Synthesis of Pt-Cu Alloy Nanodendrites as High-Performance Electrocatalysts for Oxygen Reduction Reaction

  • LUO Liu-xuan ,
  • WEI Guang-hua ,
  • SHEN Shui-yun ,
  • ZHU Feng-juan ,
  • KE Chang-chun ,
  • YAN Xiao-hui ,
  • ZHANG Jun-liang
Expand
  • 1. Institute of Fuel Cells, School of Mechanical Engineering, MOE Key Laboratory of Power & Machinery Engineering; 2. SJTU-Paris Tech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2018-09-28

  Revised date: 2018-10-15

  Online published: 2018-10-29

Supported by

This work was funded by the National Key Research and Development Program of China (No. 2016YFB0101201) and the National Natural Science Foundation of China (No.21533005 and No. 21503134)

摘要

纳米材料的结构和化学成分对其催化性能的显著影响已经得到验证. 因此,本文通过一种简易的蚀刻方法,合成出具有均匀合金结构且尺寸和形貌均一的Pt-Cu纳米枝晶(NDs)作为高效氧还原(ORR)催化剂. 其树枝状形貌的形成得益于由Br-/O2氧化蚀刻剂引起的蚀刻效应. 通过改变Pt/Cu前驱体的比例可以容易地调节Pt-Cu NDs的Pt/Cu原子比,而不会使其树枝状形貌发生改变. 活性最高的碳载Pt1Cu1 NDs(Pt1Cu1 NDs/C)的面积比活性为1.17 mA·cm-2@0.9V(vs. RHE),约为商业Pt/C的5.32倍. 此外,Pt1Cu1 NDs/C还具有卓越的电化学耐久性,即使在经过加速衰减实验的12000个电势循环后仍保持其优异的ORR催化活性. Pt1Cu1 NDs/C优异的ORR催化活性和电化学耐久性得益于由其合金结构和枝晶形貌产生的电子效应和结构效应.

本文引用格式

罗柳轩 , 魏光华 , 沈水云 , 朱凤鹃 , 柯长春 , 闫晓晖 , 章俊良 . Pt-Cu合金纳米枝晶的合成及其氧还原催化性能[J]. 电化学, 2018 , 24(6) : 733 -739 . DOI: 10.13208/j.electrochem.180856

Abstract

Structures and compositions have significant effects on the catalytic properties of nanomaterials. Herein, a facile etching-based method was employed to synthesize Pt-Cu nanodendrites (NDs) with uniform and homogeneous alloy structures for enhancing oxygen reduction reaction (ORR). The formation of dendritic morphology was ascribed to the etching effect caused by the oxidative etchants of the Br-/O2 pair. The atomic ratio of Pt/Cu in Pt-Cu NDs could be easily tuned by altering the ratio of the Pt/Cu precursors, without deteriorating the dendritic morphology. The most active carbon-supported Pt1Cu1 NDs (Pt1Cu1 NDs/C) exhibited the area-specific activity of 1.17 mA·cm-2@0.9 V (vs. RHE), which is ~5.32 times relative to that of commercial Pt/C. Moreover, Pt1Cu1 NDs/C also possessed a remarkable electrochemical durability, preserving its superior ORR catalytic activity even after 12000 potential cycles during the accelerated degradation test. Such excellent catalytic activity and electrochemical durability of Pt1Cu1 NDs/C toward ORR were resulted from the combined electronic and structural effects, which are imparted by the Pt-Cu alloy structure and the dendritic morphology.

参考文献

[1]  Luo L X, Zhu F J, Tian R X, et al. Composition-graded PdxNi1-x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction[J]. ACS Catalysis, 2017, 7(8): 5420-5430.
[2]  Chen A C, Holt-Hindle P. Platinum-based nanostructured materials: synthesis, properties, and applications[J]. Chemical Reviews, 2010, 110(6): 3767-3804.
[3]  Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
[4]  Wang Y J, Zhao N N, Fang B Z, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity[J]. Chemical Reviews, 2015, 115(9): 3433-3467.
[5]  Cheng N C, Banis M N, Liu J, et al. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction[J]. Advanced Materials, 2015, 27(2): 277-281.
[6]  Wu J B, Gross A, Yang H, et al. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent[J]. Nano Letters, 2011, 11(2): 798-802.
[7]  Zhang J L, Vukmirovic M B, Xu Y, et al. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates[J]. Angewandte Chemie International Edition, 2005, 44(14): 2132-2135.
[8]  Tian R X, Shen S Y, Zhu F J, et al. Icosahedral Pt-Ni nanocrystalline electrocatalyst: growth mechanism and oxygen reduction activity[J]. ChemSusChem, 2018, 11(6): 1015-1019.
[9]  Stamenkovic V, Markovic N M, Ross P N. Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions[J]. Journal of Electroanalytical Chemistry, 2001, 500(1/2): 44-51.
[10]  Koenigsmann C, Santulli A C, Gong K P, et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2011, 133(25): 9783-9795.
[11]  Lim B K, Jiang M J, Camargo P H C, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932): 1302-1305.
[12]  Lim B K, Jiang M J, Yu T K, et al. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties[J]. Nano Research, 2010, 3(2): 69-80.
[13]  Si W F, Li J, Li H Q, et al. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity[J]. Nano Research, 2013, 6(10): 720-725.
[14]  Zhang G, Shao Z G, Lu W T, et al. One-pot synthesis of Ir@Pt nanodendrites as highly active bifunctional electrocatalysts for oxygen reduction and oxygen evolution in acidic medium[J]. Electrochemistry Communications, 2012, 22: 145-148.
[15]  Wang L, Yamauchi Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell[J]. Journal of the American Chemical Society, 2010, 132(39): 13636-13638.
[16]  Luo S P, Shen P K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis[J]. ACS Nano, 2016, 11(12): 11946-11953.
[17]  Cordero B, Gomez V, Platero-Prats A E, et al. Covalent radii revisited[J]. Dalton Transactions, 2008, 21: 2832-2838.
[18]  Gan L, Heggen M, Rudi S, et al. Core-shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis[J]. Nano Letters, 2012, 12(10): 5423-5430.
[19]  Adzic R R, Zhang J L, Sasaki K, et al. Platinum monolayer fuel cell electrocatalysts[J]. Topics in Catalysis, 2007, 46(3/4): 249-262.
[20]  Wakisaka M, Mitsui S, Hirose Y, et al. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS[J]. The Journal of Physical Chemistry B, 2006, 110(46): 23489-23496.

文章导航

/