欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

离子液体辅助条件下由稻壳合成超级电容器用多孔炭

  • 张韩方 ,
  • 魏 风 ,
  • 孙 健 ,
  • 荆梦莹 ,
  • 何孝军
展开
  • 安徽工业大学化学与化工学院,安徽省煤清洁转化与综合利用重点实验室,安徽 马鞍山 243002

收稿日期: 2018-07-23

  修回日期: 2018-08-28

  网络出版日期: 2019-12-28

Ionic Liquid Assisted Synthesis of Porous Carbons from Rice Husk for Supercapacitors

  • ZHANG Han-fang ,
  • WEI Feng ,
  • SUN Jian ,
  • JING Meng-ying ,
  • HE Xiao-jun
Expand
  • School of Chemistry and Chemical Engineering, Anhui Key Lab of Coal Clean Conversion and Utilization, Anhui University of Technology, Maanshan 243002, China

Received date: 2018-07-23

  Revised date: 2018-08-28

  Online published: 2019-12-28

Supported by

This work was supported by the National Natural Science Foundation of China (Nos. U1508201, U1710116), the Provincial Innovative Group for Processing & Clean Utilization of Coal Resource.

摘要

本文以稻壳为碳源,以离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)为模板和辅助活化剂制备了多孔炭材料(PCs). 多孔炭的比表面积达1438 m2·g-1,总孔容达0.75 cm3·g-1. 以PCs为超级电容器电极材料,6 mol·L-1的KOH溶液为电解液组装成扣式电池,在0.05 A·g-1的电流密度下,比电容高达256 F·g-1;当电流密度增大至10 A·g-1,其比电容仍保持在211 F·g-1,展现出好的倍率性能. 所得的多孔炭电极均表现出优异的循环稳定性. 这一工作以BMIMPF6作为模板和辅助活化剂,为合成生物质基超级电容器用多孔炭提供了一种新方法.

本文引用格式

张韩方 , 魏 风 , 孙 健 , 荆梦莹 , 何孝军 . 离子液体辅助条件下由稻壳合成超级电容器用多孔炭[J]. 电化学, 2019 , 25(6) : 764 -772 . DOI: 10.13208/j.electrochem.180721

Abstract

It is still a challenge to prepare carbon materials with high specific surface area at low cost from renewable resources. Herein, the authors report an efficient approach to synthesize porous carbons (PCs) from rice husk with ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)) as a template and an activation agent. The as-made PCs featured the high specific surface area up to 1438 m2·g-1. As electrodes for supercapacitors, PCs showed a high specific capacitance of 256 F·g-1 at 0.05 A·g-1 in 6 mol·L-1 KOH aqueous electrolyte and a good rate performance of 211 F·g-1 at 10 A·g-1. All the PC electrodes exhibited good cycle stability. This work provides a new way for efficient synthesis of PCs from biomass using BMIMPF6 as a template and an assisted activation agent for high-performance supercapacitors.

参考文献

[1]  Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials, 2018, 30(15): 1705789.
[2]  Wang H Y, Zhou Q Q, Yao B W, et al. Suppressing the self-discharge of supercapacitors by modifying separators with an ionic polyelectrolyte[J]. Advanced Material Interfaces, 2018, 5(10): 1701547.
[3]  Lang J W(郎俊伟), Zhang X(张旭), Wang R T(王儒涛), et al. Strategies to enhance energy density for supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(5): 507-532.
[4]  Huang T(黄涛), Tao G Z(陶广智), Yang C Q(杨重庆), et al. Template induced fabrication of nitrogen doped carbon sheets as electrode materials in supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(6): 604-609.
[5]  Ye J L(叶江林), Zhu Y W(朱彦武). Porous carbon materials produced by KOH activation for supercapacitor electrodes[J]. Journal of Electrochemistry(电化学), 2017, 23(5): 548-559.
[6]  Zhou Y S(周岳珅), Li M(李梦), Wu S(吴双), et al. Morphology control of ZnCo2O4 electrode materials and their electrochemical properties study on supercapacitors[J]. Journal of Electrochemistry(电化学), 2019, DOI: 10.13208/j.electrochem.180625.
[7]  Shen L F, Che Q, Li H S, et al. Mesoporous NiCo2O4 nano-wire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014, 24(18): 2630-2637.
[8]  Ma L B, Hu Y, Chen R P, et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution[J]. Nano Energy, 2016, 24: 139-147.
[9]  Su L, Gao L J, Du Q H, et al. Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution[J]. Journal of Alloys and Compounds, 2018, 749: 900-908.
[10]  Zhang S, Sui L N, Kang H Q, et al. High performance of N-doped graphene with bubble-like textures for supercapacitors[J]. Small, 2017, 14: UNSP1702570.
[11]  Yu D F, Chen C, Zhao G Y, et al. Biowaste-derived hierarchical porous carbon nanosheets for ultrahigh power density supercapacitors[J]. ChemSusChem, 2018, 11(10): 1678-1685.
[12]  He X J, Ling P H, Qiu J S, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources, 2013, 240: 109-113.
[13]  Chen C, Yu D F, Zhao G Y, et al. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors[J]. Nano Energy, 2016, 27: 377-389.
[14]  Song X L, Guo J X, Guo M X, et al. Freestanding needle-like polyaniline-coal based carbon nanofibers composites for flexible supercapacitor[J]. Electrochimica Acta, 2016, 206: 337-345.
[15]  He X J, Li X J, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340: 183-191.
[16]  Pan L, Wang Y X, Hu H, et al. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors[J]. Carbon, 2018, 134: 345-353.
[17]  Liu D C, Zhang W L, Lin H B, et al. A green technology for the preparation of high capacitance rice husk-based activated carbon[J]. Journal of Cleaner Production, 2016, 112: 1190-1198.
[18]  Wu J Q, Yu D X, Zeng X P, et al. Ash formation and fouling during combustion of rice husk and its blends with a high alkali Xinjiang coal[J]. Energy & Fuels, 2018, 32(1): 416-424.
[19]  Guo D C, Mi J, Hao G P, et al. Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors[J]. Energy & Environmental Science, 2013, 6(2): 652-659.
[20]  Yang H M, Cui X J, Deng Y Q, et al. Ionic liquid templated preparation of carbon aerogels based on resorcinol-formaldehyde: properties and catalytic performance[J]. Journal of Materials Chemistry, 2012, 22(41): 21852-21856.
[21]  Wang G, Ling Z, Li C P, et al. Ionic liquid as template to synthesize carbon xerogels by coupling with KOH activation for supercapacitors[J]. Electrochemistry Community, 2013, 31: 31-34.
[22]  Prasath A, Athika M, Duraisamy E, et al. Carbon-quantum-dot-derived nanostructured MnO2 and its symmetrical supercapacitor performances[J]. ChemistrySelect, 2018, 3(30): 8713-8723.
[23]  Kroon M C, Buijs W, Peters C J, et al. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids[J]. Thermochimica Acta, 2007, 465(1/2): 40-47.
[24]  He X J, Ling P H, Yu M X, et al. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors[J]. Electrochimica Acta, 2013,105: 635-641.
[25]  Xie K, Qin X T, Wang X Z, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24(3): 347-352.
[26]  Hao L, Luo B, Li X L, et al. Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors[J]. Energy & Environmental Science, 2012, 5(12): 9747-9751.
[27]  Qie L, Chen W M, Xu H H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy & Environmental Science, 2013, 6(8): 2497-2504.
[28]  Wang H J, Sun X X, Liu Z H, et al. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes[J]. Nanoscale, 2014, 6(12): 6577-6584.
[29]  Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications[J]. Journal of Materials Chemistry A, 2013, 1(1): 14-19.
[30]  Zhang J B, Jin L J, Cheng J, et al. Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes[J]. Carbon, 2013, 55: 221-232.

文章导航

/