欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

低铂膜电极结构优化途径

  • 饶妍 ,
  • 李赏 ,
  • 周芬 ,
  • 田甜 ,
  • 钟青 ,
  • 宛朝辉 ,
  • 谭金婷 ,
  • 潘牧
展开
  • 1. 武汉理工大学材料复合新技术国家重点实验室, 燃料电池湖北省重点实验室, 湖北 武汉 430070;2. 武汉理工新能源有限公司, 湖北 武汉 430223

收稿日期: 2018-09-05

  修回日期: 2018-09-27

  网络出版日期: 2018-10-12

基金资助

国家自然科学基金项目(No. 20833005,No. 20828005,No. 20921120405)资助

Fuel cell performance curve after MEA optimization Structural Optimization of Low Pt Membrane Electrode Assembly

  • RAO Yan ,
  • LI Shang ,
  • ZHOU Fen ,
  • TIAN Tian ,
  • ZHONG Qing ,
  • WAN Zhao-hui ,
  • TAN Jin-ting ,
  • PAN Mu
Expand
  • 1. State Key Laboratory of Advanced Technology for Materials Synthesis and Progressing, Hubei Fuel Cell Key Laboratory, Wuhan University of Technology, Wuhan 430070, China; 2. Wuhan WUT New Energy Co.,Ltd., Wuhan, China, 430223

Received date: 2018-09-05

  Revised date: 2018-09-27

  Online published: 2018-10-12

摘要

膜电极是质子交换膜燃料电池的核心组件,长期以来,在衣院士的指导下,我国高度重视膜电极技术的开发. 目前,燃料电池的研发和产业化进入了一个新的时代,对膜电极提出来更高的要求,特别是在降低铂载量方面,提出了0.125 mg·W-1的挑战性指标. 本文从活化极化、欧姆极化和传质极化三个方面分析了低铂载量情况下电池性能下降的原因,提出应重点关注催化剂在燃料电池工作区间(0.6 V ~ 0.8 V)的催化活性,并讨论了用电荷传输阻抗作为催化剂活性指示符的合理性. 从优化潜力来说,传质极化优化>活化极化优化>欧姆极化优化. 催化层结构优化是实现低铂目标的关键,重点是解决离子聚合物(ionomer)传递质子和阻碍气体的矛盾.

本文引用格式

饶妍 , 李赏 , 周芬 , 田甜 , 钟青 , 宛朝辉 , 谭金婷 , 潘牧 . 低铂膜电极结构优化途径[J]. 电化学, 2018 , 24(6) : 677 -686 . DOI: 10.13208/j.electrochem.180843

Abstract

Membrane electrode assemblies (MEAs) are the key component of proton exchange membrane fuel cell. For a long time, much attention has been paid to develop MEA technology. At present, the research, development and industrialization of fuel cell has entered a new era. More strict requirements for MEA, especially for the reduction of Pt loading with a challenging target of 0.125 mg·W-1 have to be met. In this paper, the performance losses under low Pt loading are analyzed in terms of activation polarization, ohm polarization and mass-transfer polarization. It is proposed that research should be focused on the activity of the catalyst under the fuel cell operating voltage (0.6 V ~ 0.8 V),and the reasonability of using charge-transfer resistance as the indicator of catalyst activity is discussed. In terms of optimization potential capacity, mass transfer polarization > activation polarization > ohm polarization. Residual performance loss associated with low cathode Pt loading can be mitigated by optimizing the catalytic layer structure, where oxygen flux through the ionomer film to the Pt surface should be minimized with high proton conduction.

参考文献

[1] The US Department of Energy. Energy efficiency and renewable energy[EB/OL]. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf
[2]  中华人民共和国科学技术部重点研发计划专项[EB/OL]. http://www.most.gov.cn/tztg/201511/t20151118_122421.htm
[3]  2016 DOE annual merit report: FC136-electrocatalysts and supports (2016-06-08)[EB/OL]. https://www.hydrogen.energy.gov/pdfs/review16/fc136_borup_2016_o.pdf
[4]  Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
[5]  Yuan X Z, Song C, Wang H, et al. Electrochemical impedance spectroscopy in PEM Fuel Cells[M]. Springer London, 2010.
[6]  Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B Environmental, 2005, 56(1): 9-35.
[7]  Salgado J R C, Ermete Antolini A, Gonzalez E R. Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction[J]. Journal of Physical Chemistry B, 2004, 108(46): 17767-17774.
[8]  Shinagawa T, Garciaesparza A T, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Scientific Reports, 2015, 5:13801.
[9]  Chen J(陈骏). Research on internal resistance in proton exchange membrane fuel cells with metal bipolar plates[D]. Wuhan University of Technology(武汉理工大学), 2014.
[10]  Cimenti M, Bessarabov D, Tam M, et al. Investigation of proton transport in the catalyst layer of PEM fuel cells by electrochemical impedance spectroscopy[C]// The Electrochemical Society. Symposium on Electrode Processes Relevant to Fuel Cell Technology held during the 217th Meeting of the Electrochemical-Society (ECS), April 25-
30, 2010, Vancouver, Canada, 2010: 147-157.
[11]  Makharia R, Mathias M F, Baker D R. Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy[J]. Computers & Biomedical Research An International Journal, 2005, 152(5): A970-A977.
[12]  Liu Y, Murphy M, Baker D, et al. Determination of electrode sheet resistance in cathode catalyst layer by AC impedance[J]. ECS Transactions, 2007, 11(1) :473-484.
[13]  Kusoglu A, Weber A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104.
[14]  Li S(李赏), Zhou F(周芬), Chen L(陈磊), et al. Dynamic simulation of oxygen reduction reaction in Pt/C electrode for proton exchange membrane fuel cells[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 129-134.
[15]  Nonoyama N, Okazaki S, Weber A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells[J]. Journal of The Electrochemical Society, 2011, 158(4): B416-B423.
[16]  Weber A Z, Kusoglu A. Unexplained transport resistances for low-loaded fuel-cell catalyst layers[J]. Journal of Materials Chemistry A, 2014, 2(41): 17207-17211.
[17]  Wang S Z, Li X H, Wan Z H, et al. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 379: 338-343.
[18]  Wan Z H, Liu S F, Zhong Q, et al. Mechanism of improving oxygen transport resistance of polytetrafluoroethylene in catalyst layer for polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7456-7464.
[19]  Paul D K, Fraser A, Karan K. Towards the understanding of proton conduction mechanism in PEMFC catalyst layer: Conductivity of adsorbed Nafion films[J]. Electrochemistry Communications, 2011, 13(8): 774-777.

 

文章导航

/