欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

酸处理的碳作为阳极电催化剂用于直接抗坏血酸碱性膜燃料电池

展开
  • 1.大连理工大学,精细化工国家重点实验室&电化学工程实验室,化工学院,辽宁 大连,116024;2. 中国科学院大连化物所,辽宁 大连,116023

收稿日期: 2018-08-27

  修回日期: 2018-09-25

  网络出版日期: 2018-10-10

基金资助

国家自然科学基金(No.21003114, No.21103163, No.21306188, No.21373211, No. 21306187),国家重点专项(No.2016YFB0101307),辽宁百千万人才计划(No.201519),辽宁省高等学校优秀科技人才支持计划(No.LR201514), 大连市优秀青年科技人才(No.2015R006)资助.

Acid Treated Carbon as Anodic Electrocatalysts toward Direct Ascorbic Acid Alkaline Membrane Fuel Cells

Expand
  • 1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; 2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)

Received date: 2018-08-27

  Revised date: 2018-09-25

  Online published: 2018-10-10

Supported by

This study was supported by National Key Research & Development Program of China (Gran No. 2016YFB0101307), National Natural Science Fund of China (Grant Nos. 21003114, 21103163, 21306188, 21373211, and 21306187), Liaoning BaiQianWan Talents Program (Grant No. 201519), Program for Liaoning Excellent Talents in University (Grant No. LR201514), Dalian Excellent Young Scientific and Technological Talents (Grant No. 2015R006)  

摘要

为改善电催化活性和亲水性,作者对商业碳黑(BP2000)进行了酸处理,获得了酸处理碳(ATC). 通过X光电子能谱、红外光谱、热重和接触角测试的表征方法证明了酸处理在碳表面产生了丰富的含氧基团. 本文首次利用紫外可见光谱测试了碱性条件抗坏血酸(AA)在空气中的化学氧化活化能,结果为37.1 kJ·mol-1. 另外,利用交流阻抗谱对碱性条件下ATC作为电催化剂时AA的氧化反应的活化能进行了评价. 碱性条件下,AA在单电池中有无ATC电催化剂层条件下的活化能分别为26.5和34.5 kJ·mol-1,活化能的降低表明ATC是一种有效的阳极电催化剂. 作者将ATC应用于直接碱性膜AA燃料电池(DAAFCs)作为阳极电催化剂,并且对DAAFC中一系列参数进行了优化,包括催化剂在膜(CCM)或气体扩散层(CDM)上的喷涂方法、阳极电催化剂的载量、阳极电催化剂中碱性聚合物的比例. 结果表明,采用CCM的膜电极制备方法、0.5 mg·cm-2的ATC载量、25wt%的碱性聚合物添加比例时,DAAFCs单池的功率密度可达18.5 mW·cm-2,远高于使用商品PtRu/C(5 mW·cm-2)做阳极电催化剂的单池. 在寿命测试中,使用溶解于1 mol·L-1 NaOH水溶液中的 0.5 mol·L-1 AA作为燃料(流速15 mL·min-1),DAAFCs单池的功率密度可以在25 min内维持在4 mW·cm-2以上(75 °C).

本文引用格式

陈禾木,邱晨曦,丛媛媛,刘会园,翟梓会,宋玉江 . 酸处理的碳作为阳极电催化剂用于直接抗坏血酸碱性膜燃料电池[J]. 电化学, 2018 , 24(6) : 748 -756 . DOI: 10.13208/j.electrochem.180844

Abstract

In order to improve the hydrophilicity and electrocatalytic activity, commercial carbon black (BP 2000) was subjected to acid treatment to obtain acid-treated carbon (ATC). The generation of rich oxygen-containing groups on the surface of the ATC was proved by X-ray photoelectron spectra (XPS), Fourier transform-infra red spectra (FTIR), thermogravimetric analysis (TG) and contact angle measurement. UV-vis spectra were firstly recorded to calculate activation energy (Ea) of ascorbic acid (AA) chemical oxidation in alkaline conditions by oxygen in air and the Ea value was determined to be 37.1 kJ·mol-1. Additionally, electrochemical impedance spectra (EIS) were used to evaluate unprecedented Eaelectrochem of ATC as electrocatalysts toward ascorbic acid (AA) oxidation in alkaline media. The Eaelectrochem values of electrochemical oxidation in alkaline membrane electrode assembly (MEA) setup of a single cell without and with ATC as the anodic electrocatalysts were calculated to be 34.5 and 26.5 kJ·mol-1, respectively. The diminished Eaelectrochem suggests that ATC does function as an effective anodic electrocatalyst. Furthermore, the ATC was applied in direct ascorbic acid alkaline membrane fuel cell (DAAFC) for the first time. We optimized a series of parameters for the fabrication of MEAs including catalyst coated membrane (CCM) or catalyst coated gas diffusion layer membrane (CDM), loading of anodic electrocatalyst, and ionomer content in the electrocatalyst slurry. It turned out that the CCM with the ATC loading of 0.5 mg·cm-2 and 25wt% ionomer reached a high power density of 18.5 mW·cm-2, which is higher than that of using PtRu/C as anodic electrocatalyst (less than 5.0 mW·cm-2). In addition, the DAAFC fed with 15 mL·min-1 of the fuel containing 0.5 mol·L-1 AA and 1 mol·L-1 NaOH aq. could stably hold a power density at 4 mW·cm-2 for 25 min.

参考文献

[1]  Ma L(马亮), Cai W W(蔡卫卫), Zhang J(张晶), et al. Optimization of membrane electrode assembly in air-breathing direct methanol fuel cell[J]. Journal of Electrochemsitry(电化学), 2010, 16(2): 131-136.
[2]  Hong Y H, Zhou Z Y, Zhan M, et al. Liquid-inlet online electrochemical mass spectrometry for the in operando monitoring of direct ethanol fuel cells[J]. Electrochemistry Communications, 2018, 87: 91-95.
[3]  Liu D, Xie M, Wang C, et al. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation[J]. Nano Research, 2016, 9(6): 1590-1599.
[4]  Benipal N, Qi J, Liu Q, et al. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells[J]. Applied Catalysis B: Environmental, 2017, 210: 121-130.
[5]  Cosnier S, Le Goff A, Holzinger M. Towards glucose biofuel cells implanted in human body for powering artificial organs: Review[J]. Electrochemistry Communications, 2014, 38: 19-23.
[6]  Liu W, Mu W, Deng Y L. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J]. Angewandte Chemie International Edition, 2014, 53(49): 13558-13562.
[7]  Senthilkumar N, Gnana kumar G, Manthiram A. 3D hierarchical core-shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells[J]. Advanced Energy Materials, 2018, 8(6): 1702207.
[8]  Nováková L, Solich P, Solichová D. HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids[J]. TrAC Trends in Analytical Chemistry, 2008, 27(10): 942-958..
[9]  Fujiwara N, Yasuda K, Ioroi T, et al. Direct polymer electrolyte fuel cells using L-ascorbic acid as a fuel[J]. Electrochemical and Solid-State Letters, 2003, 6(12): A257.
[10]  Fujiwara N, Yamazaki S I, Siroma Z, et al. L-Ascorbic acid as an alternative fuel for direct oxidation fuel cells[J]. Journal of Power Sources, 2007, 167(1): 32-38.
[11]  Mondal S K, Raman R K, Shukla A K, et al. Electrooxidation of ascorbic acid on polyaniline and its implications to fuel cells[J]. Journal of Power Sources, 2005, 145(1): 16-20.
[12]  Homma T, Kondo M, Kuwahara T, et al. Immobilization of acid phosphatase on a polyaniline/poly(acrylic acid) composite film for use as the anode of a fuel cell driven with L-ascorbic acid 2-phosphate[J]. Polymer Journal, 2012, 44(11): 1117-1122.
[13]  Li X D, Huang M G, Huang B, et al. Fabrication and catalytic properties of highly ordered single-walled carbon nanotube arrays coated with photoelectro-polymerized bisphenol A films for visible-light-enhanced ascorbate fuel cells[J]. Journal of Electroanalytical Chemistry, 2017, 803: 117-124.
[14]  Fujiwara N, Yamazaki S, Siroma Z, et al. Direct oxidation of l-ascorbic acid on a carbon black electrode in acidic media and polymer electrolyte fuel cells[J]. Electrochemistry Communications, 2006, 8(5): 720-724.
[15]  Mogi H, Fukushi Y, Koide S, et al. A flexible ascorbic acid fuel cell with a microchannel fabricated using MEMS techniques[M]. Journal of Physics: Conference Series, 2013, 476: 012065.
[16]  Hoshi K, Muramatsu K, Sumi H, et al. Miniaturized ascorbic acid fuel cells with flexible electrodes made of graphene-coated carbon fiber cloth[J]. Japanese Journal of Applied Physics, 2016, 55(4): 04EC11.
[17]  Uhm S, Choi J, Chung S T, et al. Electrochemically oxidized carbon anode in direct l-ascorbic acid fuel cells[J]. Electrochimica Acta, 2007, 53(4): 1731-1736.
[18]  Choun M, Lee H J, Lee J. Positively charged carbon electrocatalyst for enhanced power performance of L-ascorbic acid fuel cells[J]. Journal of Energy Chemistry, 2016, 25(5): 793-797.
[19]  Sathe B R. A scalable and facile synthesis of carbon nanospheres as a metal free electrocatalyst for oxidation of l-ascorbic acid: Alternate fuel for direct oxidation fuel cells[J]. Journal of Electroanalytical Chemistry, 2017, 799: 609-616.
[20]  Deutsch J C. Dehydroascorbic acid[J]. Journal of Chromatography A, 2000, 881(1): 299-307.
[21]  Muneeb O, Do E, Tran T, et al. A direct ascorbate fuel cell with an anion exchange membrane[J]. Journal of Power Sources, 2017, 351: 74-78.
[22]  Majari Kasmaee L, Gobal F. A preliminary study of the electro-oxidation of l-ascorbic acid on polycrystalline silver in alkaline solution[J]. Journal of Power Sources, 2010, 195(1): 165-169.
[23]  Yao R(姚瑞), Song Y J(宋玉江), Li H Q(李焕巧), et al. Preparation parameters optimization and electrocatalytic properties of supported Au nanoparticles[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 147-156.
[24]  Cong Y Y, Yi B L, Song Y J. Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts[J]. Nano Energy, 2018, 44: 288-303.
[25]  Li J, Liu H Y, Lv Y, et al. Influence of counter electrode material during accelerated durability test of non-precious metal electrocatalysts in acidic medium[J]. Chinese Journal of Catalysis, 2016, 37(7): 1109-1118.
[26]  Bai Y Z, Yi B L, Li J, et al. A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework[J]. Chinese Journal of Catalysis, 2016, 37(7): 1127-1133.
[27]  Naseh M V, Khodadadi A A, Mortazavi Y, et al. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment[J]. Carbon, 2010, 48(5): 1369-1379.
[28]  Pinchas S, Laulicht I. Infrared spectra of labelled compounds[M]. London: Academic Press, 1971.
[29]  Tan L S(谭力盛), Pan J(潘婧), Li Y(李瑶), et al. Influence of electrode hydrophobicity on performance of alkaline polymer electrolyte fuel cells[J]. Journal of Electro-
chemsitry(电化学), 2013, 19(3): 199-203.
[30]  Berg R W. Investigation of L(+)-ascorbic acid with Raman spectroscopy in visible and UV light[J]. Applied Spectroscopy Reviews, 2014, 50(3): 193-239.
[31]  Yan J B, Zhao Z, Shang L, et al. Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell[J]. Journal of Power Sources, 2016, 319: 124-130.
[32]  Shang L, Wu W M, Zhao Z, et al. Oxygen-reduction reaction on preferred oriented Gd0.1Ce0.9O2-δ films[J]. The Journal of Physical Chemistry C, 2018, 122(15): 8396-8405.
[33]  Lee C G. Temperature effect on the electrode reactions in a molten carbonate fuel cell[J]. Journal of Electroanalytical Chemistry, 2018, 810: 48-54.

 

文章导航

/