欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

CVD 法制备三维石墨烯的电化学储能性能

  • 夏永康 ,
  • 顾明远 ,
  • 杨红官 ,
  • 于馨智 ,
  • 鲁兵安
展开
  • 1. 湖南大学物理与微电子科学学院,湖南 长沙 410082; 2. 福建海峡石墨烯产业技术研究院,福建 泉州 362201

收稿日期: 2018-08-20

  修回日期: 2018-09-11

  网络出版日期: 2019-02-28

基金资助

国家自然科学基金(No. 51672078,No. 21473052,No. 61474041,No. 21303046,No. 21473052)、教育部博士点基金(No. 20130161120014)、湖南省自然科学基金(No. 14JJ3049)及湖湘英才、湖南大学交叉学科基金(No. 531107040762)及湖南省青年骨干教师培养基金支持

CVD Preparation and Application of 3D Graphene in Electrochemical Energy Storage

  • XIA Yong-kang ,
  • GU Ming-yuan ,
  • YANG Hong-guan ,
  • YU Xin-zhi ,
  • LU Bing-an
Expand
  • 1. School of Physics and Electronics, Hunan University, Changsha 410082, China; 2. Fujian Strait Graphene Industry Technology Research Institute, Quanzhou 362201, Fujian, China

Received date: 2018-08-20

  Revised date: 2018-09-11

  Online published: 2019-02-28

摘要

维石墨烯是由二维石墨烯构成的三维网络结构,多孔的网络结构赋予了三维石墨烯超大的比表面积、超高的机械强度以及优异的电子传输通道. 因其优异的性能,三维石墨烯及其复合材料已经广泛地应用于能源、化学和生物等研究领域. 在三维石墨烯的合成方法中,化学气相沉积法由于制备的三维石墨烯具有高纯度、良好结晶性和优异的机械性能而备受推崇. 本文结合当前研究热点,综述了化学气相沉积法制备三维石墨烯及其复合材料在电化学储能领域(铝电池、锂离子电池、锂-硫电池、钠离子电池、金属-空气电池、超级电容器)中的应用,并简要评述当前化学气相沉积法制备三维石墨烯在应用中所面临的挑战及发展前景.

本文引用格式

夏永康 , 顾明远 , 杨红官 , 于馨智 , 鲁兵安 . CVD 法制备三维石墨烯的电化学储能性能[J]. 电化学, 2019 , 25(1) : 89 -103 . DOI: 10.13208/j.electrochem.180548

Abstract

Three-dimensional (3D) graphene combinations with the excellent intrinsic properties of graphene and the 3D micro/nano porous structures provide a graphene foam with high specific surface area, excellent mechanical strength and fast electron and mass transports. The 3D graphene foam and its composite nanomaterials are widely used in the fields of nano-electronics, energy storage, chemical and biological sensing. The 3D graphene foam prepared by chemical vapor deposition (CVD) method is of high purity and crystallinity.  In this review, a brief overview in the CVD preparations of 3D graphene and properties of CVD prepared 3D graphene based nanomaterials in electrochemical energy storage systems (aluminum battery, lithium-ion battery, lithium-sulfur battery, sodium-ion battery, metal-air battery and supercapacitor) is given.  Recent progresses and possible future applications in CVD prepared 3D graphene based nanomaterials are also reviewed and highlighted.

参考文献

[1]  Wang H L, Dai H J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J]. Chemical Society Reviews, 2013, 42(7): 3088-3113.
[2]  Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[3]  Stein A. Energy storage: Batteries take charge[J]. Nature Nanotechnology, 2011, 6(5): 262-263.
[4]  Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[5]  Liao L, Peng H L, Liu Z F. Chemistry makes graphene beyond grapheme[J]. Journal of the American Chemical Society, 2014, 136(35): 12194-12200.
[6]  Novoselov K S, Geim A K, Morozov S V, et al. Electricfield effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[7]  Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer grapheme[J]. Nano Letters, 2008, 8(3): 902-907.
[8]  Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science, 2008, 321(5887): 385-388.
[9]  Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[10]  Dai B Y, Fu L, Zou Z Y, et al. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer grapheme[J]. Nature Communications, 2011, 2: 522.
[11]  Zhang C H, Fu L, Liu N, et al. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J]. Advanced Materials, 2011, 23(8): 1020-1024.
[12]  Guo S J, Dong S J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5): 2644-2672.
[13]  Leng K, Zhang F, Zhang L, et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance[J]. Nano Research, 2013, 6(8): 581-592.
[14]  Chen Y J, Zhu J, Qu B H, et al. Graphene improving lithium-ion battery performance by construction of NiCO2O4/graphene hybrid nanosheet arrays[J]. Nano Energy, 2014, 3: 88-94.
[15]  Zhu J, Zhang G H, Yu X Z, et al. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries[J]. Nano Energy, 2014, 3: 80-87.
[16]  Zhu J, Lei D N, Zhang G H, et al. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries[J]. Nano-
scale, 2013, 5(12): 5499-5505.
[17]  Lu B G, Li T, Zhao H T, et al. Graphene-based composite materials beneficial to wound healing[J]. Nanoscale, 2012, 4(9): 2978-2982.
[18]  Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.
[19]  Mao S, Lu G H, Chen J H. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015, 7(16): 6924-6943.
[20]  Yang X W, Zhu J W, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors[J]. Advanced Materials, 2011, 23(25): 2833-2838.
[21]  Niu Z Q, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials, 2012, 24(30): 4144-4150.
[22]  Li C, Shi G Q. Three-dimensional graphene architectures[J]. Nanoscale, 2012, 4(18): 5549-5563.
[23]  Wang X B, Zhang Y J, Zhi C Y, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4: 2905.
[24]  Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
[25]  Choi B G, Yang M, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano, 2012, 6(5): 4020-
4028.
[26]  Lin M C, Gong M, Lu B G, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 324-328.
[27]  Yu X Z, Wang B, Gong D C, et al. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries[J]. Advanced materials, 2017, 29(4): 1604118.
[28]  Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(6): 366-377.
[29]  Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[30]  Luo J S, Liu J L, Zeng Z Y, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J]. Nano Letters, 2013, 13(12): 6136-6143.
[31]  Wang C D, Chui Y S, Ma R G, et al. A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(35): 10092-10098.
[32]  Sun, H Y, Liu Y G, Yu Y L, et al. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries[J]. Electrochimica Acta, 2014, 118: 1-9.
[33]  Zhang Q F, Xu Z, Lu B G. Strongly coupled MoS2-3D graphene materials for ultrafast charge slow discharge LIBs and water splitting applications[J]. Energy Storage Materials, 2016, 4: 84-91.
[34]  Zhu H, Wu X Z, Zan L, et al. Three-dimensional macroporous graphene-Li2FeSiO4 composite as cathode material for lithium-ion batteries with superior electrochemical performances[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11724-11733.
[35]  Son, I H, Park J H, Park S, et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities[J]. Nature Communications, 2017, 8: 1561.
[36]  Manthiram A, Fu Y Z, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.
[37]  Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rehargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647.
[38]  Xi K, Kidambi P R, Chen R J, et al. Binder free three-dimensional sulphur/few-layer grpahene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries[J]. Nanoscale, 2014, 6(11): 5746-5753.
[39]  Zhou G M, Li L, Ma C Q, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11: 356-365.
[40]  Hu G J, Xu C, Sun Z H, et al. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries[J]. Advanced materials, 2016, 28(8): 1603-1609.
[41]  Xu J T, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials, 2015, 27(12): 2042-2048.
[42]  Liu Y G, Cheng Z Y, Sun H Y, et al. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode[J]. Journal of Power Sources, 2015, 273: 878-884.
[43]  Liu S Y, Zhu Y G, Xie J, et al. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries[J]. Advanced Energy Materials, 2014, 4(9): 1301960.
[44]  Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[45]  Dong X C, Wang X W, Wang L, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon, 2012, 50(13): 4865-4870.
[46]  Wang W, Guo S R, Penchev M, et al. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors[J]. Nano Energy, 2013, 2(2): 294-303.
[47]  He Y M, Chen W J, Li X D, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1): 174-182.
[48]  Yu X Z, Lu B A, Xu Z. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes[J]. Advanced Materials, 2014, 26(7): 1044-1051.
[49]  Dong X C, Xu H, Wang X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213.
[50]  Chen K, Shi L R, Zhang Y F, et al. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications[J]. Chemical Society Reviews, 2018, 47(9): 3018-3036.
[51]  Aurbach D, Suresh G S, Levi E, et al. Progress in rechargeable magnesium battery technology[J]. Advanced Materials, 2007, 19(23): 4260-4267.
[52]  Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries[J].  Nature, 2000, 407(6805): 724-727.
[53]  Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications[J].  Chemical Society Reviews, 2013, 42(2): 794-830.
[54]  Crowder S W, Prasai D, Rath R, et al. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale, 2013, 5(10): 4171-4176.
[55]  Kim B J, Yang G, Park M J, et al. Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes[J]. Applied Physics Letters, 2013, 102(16): 161902.

 

文章导航

/