欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化

  • 张雅琳 ,
  • 陈驰 ,
  • 邹亮亮 ,
  • 邹志青 ,
  • 杨辉
展开
  • 1. 中国科学院上海高等研究院, 上海 201210; 2. 中国科学院大学, 北京 100049

收稿日期: 2018-09-04

  修回日期: 2018-09-14

  网络出版日期: 2018-09-26

基金资助

黑龙江省自然科学基金(No. QC2013C008)资助

Fe-N Doped Hollow Carbon Nanospheres Linked by Carbon Nanotubes for Oxygen Reduction Reaction

  • ZHANG Ya-lin ,
  • CHEN Chi ,
  • ZOU Liang-liang ,
  • ZOU Zhi-qing ,
  • YANG Hui
Expand
  • 1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;2. University of Chinese Academy of Sciences, Beijing 100049, China)

Received date: 2018-09-04

  Revised date: 2018-09-14

  Online published: 2018-09-26

摘要

以ZIF-8为模板,通过表面包覆聚多巴胺、同时刻蚀ZIF-8中的Zn2+,形成空心球,在与三氯化铁络合后,经高温碳化和氨气热处理,得到了高比表面积的Fe-N共掺杂的碳纳米管串联的碳纳米空心球催化剂. 氨气不仅刻蚀碳基底提高比表面积,还可还原铁元素形成Fe4N纳米粒子,提升了催化剂对氧还原反应的电催化活性,其氧还原半波电位达0.79 V,仅比商业Pt/C低60 mV,而且其稳定性和耐甲醇性更优于商业Pt/C,展示出良好的燃料电池应用潜力.

本文引用格式

张雅琳 , 陈驰 , 邹亮亮 , 邹志青 , 杨辉 . Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化[J]. 电化学, 2018 , 24(6) : 726 -732 . DOI: 10.13208/j.electrochem.180842

Abstract

The development of non-precious metal catalysts for oxygen reduction reaction (ORR) is essential for large-scale application of proton exchange membrane fuel cells. Herein, we present the in situ formed Fe-N doped hollow carbon nanospheres linked by carbon nanotubes composite, synthesized by using ZIF-8 as sacrificed template to form polydopamine (PDA) hollow nanospheres, followed by complexing with FeCl3, high temperature heat-treatment and NH3-etching. ZIF-8 was gradually decomposed simultaneously with PDA coating due to the loss of Zn2+ grabbed by PDA. NH3 etching resulted in the improved surface area, while the reducibility of NH3 resulted in the formation of Fe4N nanoparticles, which benefits the ORR activity of the catalyst. The half-wave potential of the as-prepared of PDA-Fe/N/C-NH3 was 0.79 V, only 60 mV lower than that of commercial Pt/C. The stability and methanol tolerance of PDA-Fe/N/C-NH3 were even superior to that of commercial Pt/C, indicating the good potential of PDA-Fe/N/C-NH3 for the application of fuel cells.

参考文献

[1]  Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—A review[J]. Journal of Power Sources, 2012, 208(Supplement C): 96-119.
[2]  Song C J, Zhang J J. Electrocatalytic oxygen reduction reaction[M]. London: Springer, 2008: 89-134.
[3]  Chen Z, Higgins D, Yu A, et al. A review on non-precious metal electrocatalysts for PEM fuel cells[J]. Energy & Environmental Science, 2011, 4(9): 3167-3192.
[4]  Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B-Environmental, 2005, 56(1/2): 9-35.
[5]  Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.
[6]  Hu Y, Jensen J O, Zhang W, et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition, 2014, 53(14): 3675-3679.
[7]  Peng H L, Mo Z Y, Liao S J, et al. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction[J]. Scientific Reports, 2013, 3(1): 1765.
[8]  Zhou D, Yang L P, Yu L H, et al. Fe/N/C hollow nanospheres by Fe(III)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction[J]. Nanoscale, 2015, 7(4): 1501-1509.
[9]  Kitao T, Zhang Y Y, Kitagawa S, et al. Hybridization of MOFs and polymers[J]. Chemical Society Reviews, 2017, 46(11): 3108-3133.
[10]  Liang H W, Wei W, Wu Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005.
[11]  Xing R H, Zhou T S, Zhou Y, et al. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction[J]. Nano-Micro Letters, 2018, 10(1): 3.
[12]  Hu H, Han L, Yu M Z, et al. Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction[J]. Energy & Environmental Science, 2016, 9(1): 107-111.
[13]  Xia W, Qu C, Liang Z B, et al. High-performance energy storage and conversion materials derived from a single metal organic framework/graphene aerogel composite[J]. Nano Letters, 2017, 17(5): 2788-2795.
[14]  Liu S H, Wang Z Y, Zhou S, et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Advanced Materials, 2017, 29(31): 1700874.
[15]  Zhu C Z, Fu S F, Song J H, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts[J]. Small, 2017, 13(15): 1603407.
[16]  Chen X Q, Yu L, Wang S H, et al. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction[J]. Nano Energy, 2017, 32: 353-358.
[17]  Liang H W, Wu Z Y, Chen L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, (11): 366-376.
[18]  Zhang C, Wang Y C, An B, et al. Networking pyrolyzed zeolitic imidazolate frameworks by carbon nanotubes improves conductivity and enhances oxygen-reduction performance in polymer-electrolyte-membrane fuel cells[J]. Advanced Material, 2017, 29(4): 1604556.
[19]  Guo Y, Yang H J, Zhou X, et al. Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks[J]. Journal of Materials Chemistry A, 2017, 5(47): 24867-24873.
[20]  Shultz M D, Reveles J U, Khanna S N, et al. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles[J]. Journal of the American Chemical Society, 2007, 129(9): 2482-2487.
[21]  Ye Z H, Wu S H, Zheng C X, et al. Self-etching of metal-organic framework templates during polydopamine coating: nonspherical polydopamine capsules and potential intracellular trafficking of metal ions[J]. Langmuir, 2017, 33(45): 12952-12959.
[22]  Xiang S Y, Wang D D, Zhang K, et al. Chelation competition induced polymerization (CCIP): construction of integrated hollow polydopamine nanocontainers with tailorable functionalities[J]. Chemical Communications, 2016, 52(66): 10155-10158.
[23]  Zhang Y K, Lin Y X, Jiang H L, et al. Well-defined cobalt catalyst with N-doped carbon layers enwrapping: the correlation between surface atomic structure and electrocatalytic property[J]. Small, 2018, 14(6): UNSP1702074.
[24]  Shultz M D, Reveles J U, Khanna S N, et al. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles[J]. Journal of the American Chemical Society, 2007, 129(9): 2482-2487.
[25]  Rao C V, Cabrera C R, Ishikawa Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J]. Journal of Physical Chemistry Letters, 2010, 1(18): 2622-2627.
[26]  Liang W, Chen J X, Liu Y W, et al. Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene[J]. ACS Catalysis, 2014, 4(11): 4170-4177.
[27]  Chen C(陈驰), Lai Y J(赖愉姣), Zhou Z Y(周志有), et al. Thermo-stability and active site structure of Fe/N/C electrocatalyst for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2017, 23(4): 400-408.
[28]  Fan X H, Kong F T, Kong A G, et al. Covalent porphyrin framework-derived Fe2P@Fe4N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts[J]. ACS Applied Materials & Interfaces,  2017, 9(38): 32840-32850.

文章导航

/