欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

铸态及快淬态CeMg10Ni2合金电化学储氢热力学及动力学性能研究

  • 胡 锋 ,
  • 罗丽容 ,
  • 李永治 ,
  • 翟亭亭 ,
  • 赵 鑫 ,
  • 张羊换
展开
  • 1. 钢铁研究总院功能材料研究所,北京市海淀区,100081; 2. 内蒙古科技大学材料与冶金学院,内蒙古自治区包头市,014010

收稿日期: 2018-06-27

  修回日期: 2018-07-17

  网络出版日期: 2018-08-27

基金资助

国家自然科学基金(No. 51761032和51871125)、内蒙古自然科学基金(No.2017BS0507和No. 2018LH05010)、内蒙古科技成果转化项目(No.CGZH2018152)及内蒙古科技大学创新基金项目(No.2014QDL015)

Investigations in Electrochemical Thermodynamic and Kinetic Properties of As-Cast and As-Quenched CeMg10Ni2 Hydrogen Storage Alloys

  • HU Feng ,
  • LUO Li-rong ,
  • LI Yong-zhi ,
  • ZHAI Ting-ting ,
  • ZHAO Xin ,
  • ZHANG Yang-huan
Expand
  • 1. Department of Functional Material Research, Central Iron and Steel Research Institute,Beijing 100081, China; 2. The School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China

Received date: 2018-06-27

  Revised date: 2018-07-17

  Online published: 2018-08-27

摘要

为了改善CeMg10Ni2合金的电化学储氢性能,快淬技术被用来制备具有非晶纳米晶结构的CeMg10Ni2合金. 运用X射线衍射及高分辨透射电镜对合金的微观结构及其相组成进行分析. 通过恒电流充放电、高倍率放电、交流阻抗以及动电位极化测试对合金的电化学性能进行了详细研究. 研究结果表明,铸态合金由多相结构组成,经过快速凝固处理的合金内部含有大量的非晶纳米晶结构,而且增加的凝固速度可以增强合金内部的非晶纳米晶形成能力. 快速凝固处理减小了合金的热力学参数(ΔH和ΔS),降低了合金氢化物的热稳定性,改善了电化学放电容量. 另外,快速凝固处理显著改善了合金的电化学动力学性能,合金的表观活化能变化进一步解释了这一结论.

本文引用格式

胡 锋 , 罗丽容 , 李永治 , 翟亭亭 , 赵 鑫 , 张羊换 . 铸态及快淬态CeMg10Ni2合金电化学储氢热力学及动力学性能研究[J]. 电化学, 2019 , 25(5) : 631 -638 . DOI: 10.13208/j.electrochem.180529

Abstract

In order to improve the electrochemical hydrogen storage properties of CeMg10Ni2 alloy, the rapid quenching technology was used to prepare CeMg10Ni2 alloys with nano-crystalline and amorphous structure. The microstructures of as-cast and as-spinning sample were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties were investigated by an automatic galvanostatic charging/discharging, high rate discharging (HRD), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The results revealed that the as-cast alloy was composed of multiphase structures. The as-quenched alloys were made up of nano-crystalline and/or amorphous structures, and the rapid solidification technology enhanced the glass forming ability of alloys. The rapid spinning technology brought on a reduction in thermodynamic parameters (ΔH and ΔS), which lowered the stability of hydride and ameliorated the discharging capacity of alloy sample. Besides, the as-quenched alloys held better electrochemical kinetics, which may be interpreted by the variation of activation energy.

参考文献

[1]  Jain I P, Lal C, Jain A. Hydrogen storage in Mg: a most promising material[J]. International Journal of Hydrogen Energy, 2010, 35(10): 5133-5144.
[2]  Ouyang L Z, Tang J J, Zhao Y J, et al. Express penetration of hydrogen on Mg(10Γ13) along the close-packed-planes[J]. Scientific Reports, 2015, 5(1): 10776-10782.
[3]  Kalinichenka S, Röntzsch L, Riedl T, et al. Hydrogen storage properties and microstructure of melt-spun Mg90Ni8RE2 (RE = Y, Nd, Gd)[J]. International Journal of Hydrogen Energy, 2011, 36(17): 10808-10815.
[4]  Sadhasivam T, Hudso M S L, Pandey S K, et al. Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7353-7362.
[5]  Kumar L H, Viswanathan B, Murthy S S. Hydrogen absorption by Mg2Ni prepared by polyol reduction[J]. Journal of Alloys and Compounds, 2008, 461(1/2): 72-76.
[6]  Cheung S, Deng W Q, Duin A C T, et al. ReaxFFMgH reactive rorce rield for magnesium hydride systems[J]. The Journal of Physical Chemistry A, 2005, 109(5): 851-859.
[7]  Wang L, Wang X H, Chen L X, et al. Electrode properties of La2Mg17 alloy ball-milled with x wt.% cobalt powder (x = 50, 100, 150 and 200)[J]. Journal of Alloys and Compounds, 2006, 414(1/2): 248-252.
[8]  Chen R G, Wang X H, Ge H W, et al. Effects of surface coating on the electrochemical properties of amorphous CeMg12 composite[J]. Rare Metal Materials and Engineering, 2009, 38(2): 0198-0202
[9]  Zhang Y H, Wang H T, Zhai T T. Hydrogen storage performances of LaMg11Ni + xwt% Ni (x=100, 200) alloys prepared by mechanical milling[J]. Journal of Alloys and Compounds, 2015, 645(1): S438-S445.
[10]  Hu F, Zhang Y H, Zhang Y, et al. Microstructure and electrochemical hydrogen storage characteristics of CeMg12 + 100wt%Ni + Ywt%TiF3 (Y=0, 3, 5) alloys prepared by ball milling[J]. Journal of Inorganic Materials, 2013, 28(2): 217-223.
[11]  Huang L J, Wang Y X, Tang J G, et al. The study of microstructure and electrochemical properties of Melt-spun Mg-Ni-La alloys[J]. International Journal of Electrochemical Science, 2011, 6(12):6200-6208.
[12]  Hu F, Zhang Y, Cai Y, et al. Electrochemical and kinetic study of as-cast and as-quench Mg2Ni-type hydrogen storage alloys [J]. Journal of Materials Research, 2013, 28(1): 2701-2708.
[13]  Wu Y, Lototskyy M V, Solberg J K, et al. Effect of microstructure on the phase composition and hydrogen absorption-desorption behaviour of melt-spun Mg-20Ni-8Mm alloys[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1495-1508.
[14]  Lin H J, Ouyang L Z, Wang H, et al. Phase transition and hydrogen storage properties of melt-spun Mg3LaNi0.1 alloy [J]. International Journal of Hydrogen Energy, 2012, 37(2): 1145-1150.
[15]  Li Y, Li P, Wan Qi, et al. A study of metal hydride as novel thermal energy storage material by using rapid solidification[J]. Journal of Alloys and Compounds, 2016, 689(1): 641-647.
[16]  Cheng H H, Yang H G, Li S L, et al. Yang. Effect of hydrogen absorption/desorption cycling on hydrogen storage performance of LaNi4.25Al0.75[J]. Journal of Alloys and Compounds, 2008, 453(1/2): 448-452.
[17]  Lin H, Ouyang L, Wang H, et al. Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg content[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14329-14335.
[18]  Zhang Y H, Li B W, Ren H P, et al. Hydrogen storage behaviours of nanocrystalline and amorphous Mg20-xLaxNi10(x=0-6) hydrogen storage alloys[J]. Rare Metal Materials and Engineering, 2010, 39(8): 1317-1322.
[19]  Zhang Y H, Zhang W, Gao J L, et al. A comparison study of hydrogen storage thermodynamics and kinetics of YMg11Ni alloy prepared by melt spinning and ball milling[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1040-1048.
[20]  Sakintuna B, Lamari-Darkim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review[J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121-1140.
[21]  Nishina T, Ura H, Uchida S. Determination of chemical diffusion coefficients in metal hydride particals with a microelectrode technique[J]. Journal of The Electrochemical Society, 1997, 144(4): 1273-1278.

文章导航

/