欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于AuNPs/PANI/TNTs纳米复合材料的电化学检测妥布霉素的适配体传感器

  • 农永玲 ,
  • 乔妮娜 ,
  • 梁 营
展开
  • 1. 医药化工学院, 广东药科大学, 广州 510006, 中国; 2. 广东省化妆品工程技术研究中心, 广州 510006, 中国

收稿日期: 2018-06-12

  修回日期: 2018-07-14

  网络出版日期: 2019-12-28

An Aptasensor Based on AuNPs/PANI/TNTs Nanocomposite for Electrochemical Detection of Tobramycin

  • NONG Yong-ling ,
  • QIAO Ni-na ,
  • LIANG Ying
Expand
  • 1. School of Chemistry and Chemical Engineering, GuangDong Pharmaceutical University, Guangzhou, 510006, China; 2. Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, 510006, China

Received date: 2018-06-12

  Revised date: 2018-07-14

  Online published: 2019-12-28

Supported by

The project was supported financially by the National Natural Science Foundation of China (No. 21201043).

摘要

本文提出了一种新型的检测妥布霉素的电化学适配体传感器,以差分脉冲伏安法(DPV)作为检测技术,亚甲基蓝作为电化学响应信号. 构建了以纳米复合材料金纳米粒子/聚苯胺/二氧化钛纳米管(AuNPs/PANI/TNTs)修饰玻碳电极的电极支架. 通过透射电子显微镜和X-射线光电子能谱对纳米复合材料进行详细的表征. 循环伏安图和电化学阻抗谱显示AuNPs/PANI/TNTs可以很好地增加电极的界面传导性能. DPV结果显示电流密度的响应和妥布霉素浓度之间存在一个很好的线性关系,并且得到一个宽广的检测范围为0.5 μmol·L-1到70 μmol·L-1. 本文提出的适配体基的传感器有很好的重复性和稳定性,作为一个潜在的手段可以应用在生物分析和医疗诊断中.

本文引用格式

农永玲 , 乔妮娜 , 梁 营 . 基于AuNPs/PANI/TNTs纳米复合材料的电化学检测妥布霉素的适配体传感器[J]. 电化学, 2019 , 25(6) : 720 -730 . DOI: 10.13208/j.electrochem.180612

Abstract

A novel well-constructed electrochemical aptamer-based sensor for the detection of tobramycin was presented, using differential pulse voltammetry (DPV) as a detection technique and methylene blue(MB) as an electrochemical indicator. A glassy carbon electrode modified with a nanocomposite of Au nanoparticles/polyaniline/titania nanotubes (AuNPs/PANI/TNTs) was constructed as the electrode scaffold. The nanocomposite was characterized by transmission electron microscopy and X-ray photoelectron spectroscopy in detail. The results of cyclic voltammetry and electrochemical impedance measurements demonstrated that the AuNPs/PANI/TNTs nanocomposites can improve greatly the electron transfer on the interface. For the detection of tobramycin, the DPV results showed a linear relationship between the current response and the concentration of tobramycin, and a wide range of detection from 0.5 μmol·L-1 to 70 μmol·L-1. The presented aptamer-based biosensor exhibited excellent sensitivity and reproducibility, which would have a potential application in bioanalysis and clinical diagnostics.

参考文献

[1]  Hammett-Stabler C A, Johns T. Laboratory guidelines for monitoring of antimicrobial drugs. National Academy of Clinical Biochemistry[J]. Clinical Chemistry, 1998, 44(5): 1129-1140.
[2]  Zhang Y H(张玉红). Selection and sequence optimization of tobamycin specific single standard DNA aptamers and their applications[D]. JiangNan University, Jiang Su, 2017.
[3]  Nederberg F, Zhang Y, Tan J P K, et al. Biodegradable nanostructures with selective lysis of microbial membranes[J]. Nature Chemistry, 2011, 3(5): 409-414.
[4] Stead D A. Current methodologies for the analysis of aminoglycosides[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 2000, 747(1/2): 69-93.
[5]  Shanson D C, Hince C J, Daniels J V. Rapid microbiologic assay of tobramycin[J]. Journal of Infectious Diseases, 1976, 134(supplement 1): S104-S109.
[6]  Kang Y, Feng K J, Chen J W, et al. Electrochemical detection of thrombin by sandwich approach using antibody and aptamer[J]. Bioelectrochemistry, 2008, 73(1): 76-81.
[7]  Wei N N, Xin X, Du J Y, et al. A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film[J]. Biosensors & Bioelectronics, 2011, 26(8): 3602-3607.
[8]  Ge F(戈芳), Cao R G(曹瑞国), Zhu B(朱斌), et al. DNA electrochemical biosensor for the detection of trace Hg2+[J]. Acta Physico - Chimica Sinica(物理化学学报), 2010, 26(7): 1779-1783.
[9]  Wang H J(王慧娟). Synthesis of ultrathin Co3O4 nanoflakes film material for electrochemical sensing[J]. Journal of Electrochemistry(电化学), 2016, 22(6): 631-635.
[10]  Schoukroun-Barnes L R, Wagan S, White R J. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics[J]. Analytical Chemistry, 2014, 86(10): 1131-1137.
[11]  Gonzalez-Fernandez E, de-los-Santos-Alvarez N, Lobo-Castanon M J, et al. Impedimetric aptasensor for tobramycin detection in human serum[J]. Biosensors & Bioelectronics, 2011, 26(5): 2354-2360.
[12]  Cappi G, Spiga F M, Moncada Y, et al. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance[J]. Analytical Chemistry, 2015, 87(10): 5278-5285.
[13]  Santos H S, de França G M, Romani E C, et al. Selective determination of tobramycin in the presence of streptomycin through the visible light effect on surface plasmon resonance of gold nanoparticles[J]. Microchemical Journal, 2014, 116: 206-215.
[14]  Wang M H, Hu B, Yang C, et al. Electrochemical biosensing based on protein-directed carbon nanospheres embedded with SnOx and TiO2 nanocrystals for sensitive detection of tobramycin[J]. Biosensors and Bioelectronics, 2018, 99: 176-185.
[15]  Wang Y, Rando R R. Specific binding of aminoglycoside antibiotics to RNA[J]. Chemistry & Biology, 1995, 2(5): 281-290.
[16]  Jiang L, Suri A K, Fiala R, et al. Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex[J]. Chemistry & Biology, 1997, 4(1): 35-50.
[17]  Tuite E, Norden B. Sequence-specific interactions of methylene blue with polynucleotides and DNA: A spectroscopic study[J]. Journal of the American Chemical Society, 1994, 116(17): 7548-7556.
[18]  Kerman K, Ozkan D, Kara P, et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes[J]. Analytica Chimica Acta, 2002, 462(1): 39-47.
[19] Kara P, Kerman K, Ozkan D, et al. Electrochemical genosensor for the detection of interaction between methylene blue and DNA[J]. Electrochemistry Communications, 2002, 4(9): 705-709.
[20]  Li X Y, Lu X J, Kan X W. 3D electrochemical sensor based on poly(hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection[J]. Journal of Ele-troanalytical Chemistry, 2017, 799: 451-458.
[21]  Li P(李培), Zhan D P(詹东平), Shao Y H(邵元华). Room temperature ionic liquid templated meso-macroporous material by self-assembled giant gold nanoparticles and its enhancement on room temperature ionic liquid templated meso-macroporous material by self-assembled giant gold nanoparticles and its enhance[J]. Journal of Electrochemistry(电化学) 2014, 20(4): 323-332.
[22]  Huang Z J(黄郑隽), Peng H P(彭花萍), Zha D J(查代君), et al. Electrocatalytic activities of Mb/AuNPs/MWCNTs/GC electrode for hydrogen peroxide reduction[J]. Journal of Electrochemistry(电化学), 2012, 18(4): 377-382.
[23]  Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin[J]. Journal of the American Chemical Society, 2004, 126(38): 11768-11769.
[24]  Chen J, Kang Y, Li C, et al. A Pt/TiO2 nanotube array electrode for glucose detection and its photoelectrocatalysis self-cleaning ability[J]. Journal of The Electrochemical Society, 2016, 164(2): B66-B73.
[25]  Huo X H, Liu P P, Zhu J, et al. Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag[J]. Biosensors and Bioelectronics, 2016, 85: 698-706.
[26]  Liu N, Chen X Y, Zhang J L, et al. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications[J]. Catalysis Today, 2014, 225(225): 34-51.
[27] Zhang Z, Luo L Q, Zhu L M , et al. Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite[J]. Analyst, 2013, 138(18): 5365-5370.
[28]  Khezrian S, Salimi A, Teymourian H, et al. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode[J]. Biosensors and Bioelectronics, 2013, 4: 218-225.
[29]  Liu X Q, Zhang J M, Liu S H, et al. Gold nanoparticle encapsulated-tubular TiO2 nanocluster as a scaffold for development of thiolated enzyme biosensors[J]. Analytical Chemistry, 2013, 85(9): 4350-4356.
[30]  Liu X Q, Yan R, Zhang J M, et al. Evaluation of a carbon nanotube-titanate nanotube nanocomposite as an electro-chemical biosensor scaffold[J]. Biosensors & Bioelectron-ics, 2015, 66: 208-215.
[31]  Yan M Q, Shen Y, Zhang G Y, et al. Multifunctional nano-tube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst[J]. Materials Science and Engineering: C, 2016, 58: 568-575.
[32]  Zhou X, Shi T J, Wu J, et al. (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation[J]. Applied Surface Science, 2013, 287(2): 359-368.
[33]  Sim L C, Leong K H, Saravanan P, et al. Rapid thermal reduced graphene oxide/Pt-TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2[J]. Applied Surface Science, 2015, 358, Part A: 122-129.
[34]  Yang K, Huang K, He Z J, et al. Promoted effect of PANI as electron transfer promoter on CO oxidation over Au/TiO2[J]. Applied Catalysis B: Environmental, 2014, 158(3): 250-257.
[35]  Li X Z, Liu W, Ni J R. Short-cut synthesis of tri-titanate nanotubes using nano-anatase: Mechanism and application as an excellent adsorbent[J]. Microporous and Mesoporous Materials, 2015, 213: 40-47.
[36]  Yang H, Ji J, Liu Y, et al. An aptamer-based biosensor for sensitive thrombin detection[J]. Electrochemistry Communications, 2009, 11(1): 38-40.
[37]  Dong X X, Li M Y, Feng N N, et al. A nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk[J]. RSC Advances, 2015, 5(105): 86485-86489.
[38]  Ding C, Ge Y, Lin J M. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles[J]. Biosensors and Bioelectronics, 2010, 25(6): 1290-1294.

文章导航

/