欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学获奖人优秀论文专辑

电池电极反应的新应用:分步法电解制氢气

  • 马元元 ,
  • 郭昭薇 ,
  • 王永刚 ,
  • 夏永姚
展开
  • 复旦大学化学系,上海市分子催化和功能材料重点实验室,能源材料化学协同创新中心,上海 200438

收稿日期: 2018-04-25

  修回日期: 2018-06-06

  网络出版日期: 2018-06-27

基金资助

国家自然科学基金项目(21622303)资助

The New Application of Battery-Electrode Reaction: Decoupled Hydrogen Production in Water Electrolysis

  • MA Yuan-yuan ,
  • GUO Zhao-wei ,
  • WANG Yong-gang ,
  • XIA Yong-yao
Expand
  • Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China

Received date: 2018-04-25

  Revised date: 2018-06-06

  Online published: 2018-06-27

摘要

可再生能源与电解水制氢技术的结合是实现可持续制氢的最佳途径. 然而,传统电解水技术中解决氢-氧同时、同步、同地产生的问题必须依赖于膜分离技术,大幅限制了氢-氧分离和氢气异地运输的灵活性,并阻碍了可再生能源(如风能、太阳能)与电解水技术的直接结合. 针对上述问题,作者课题组在近期提出了基于电池电极反应的分步法电解水制氢技术,即通过电池电极的可逆电化学反应将现有电解水过程拆分为制氢和制氧分立步骤,实现在无膜条件下氢气和氧气的分时、分地交替制备,提升了电解水制氢的灵活性,促进了可再生能源向氢能的直接转化. 本文将介绍这一新技术的研究进展,并分析这一技术的优点和面临的挑战.

本文引用格式

马元元 , 郭昭薇 , 王永刚 , 夏永姚 . 电池电极反应的新应用:分步法电解制氢气[J]. 电化学, 2018 , 24(5) : 444 -454 . DOI: 10.13208/j.electrochem.180143

Abstract

Hydrogen has been considered as a promising alternative to unsustainable fossil fuels because of its high calorific value, clean and abundant resources. Water electrolysis combined with renewable energy is regarded as the best way for hydrogen production, which will become the foundation of future hydrogen economy. For the past few years, many efforts have been employed to develop the cheap and high-performance catalyst for hydrogen evolution reaction and oxygen evolution reaction. However,the coupled hydrogen and oxygen evolution and the use of the expensive membrane have greatly restricted the flexibility of the conventional water electrolysis, and hindered the utilization of renewable energy. Recently, our group has introduced the battery-electrode as a solid-state redox mediator to separate the hydrogen and oxygen productions during water electrolysis in space and time, providing a flexible and membrane-free architecture for water splitting. This decoupled architecture also facilitates the conversion of renewable energy to hydrogen. This review highlights the research progresses, and analyzes the advantages and challenges to this new architecture.

参考文献

[1]  Chandross E A. Shining a light on solar water splitting[J]. Science, 2014, 344(6183): 469.
[2]  Yan D F, Dou S, Li T, et al. Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction[J]. Journal of Material Chemistry A, 2016, 4(36): 13726-13730.
[3]  Schröder M, Kailasam K, Borgmeyer J, et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation[J]. Energy Technology, 2015, 3(10): 1014-1017.
[4]  Tang C, Cheng N Y, Pu Z H, et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015, 54(32): 9351-9355.
[5]  Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J]. Science, 2011, 334(6056): 645-648.
[6]  Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources[J]. Solar Energy, 2004, 78(5): 661-669.
[7]  Gandia L M, Oroz R, Ursua A, et al. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions[J]. Energy & Fuels, 2007, 21(3): 1699-1706.
[8]  Pinhassi R I, Kallmann D, Saper G, et al. Hybrid bio-photo-electro-chemical cells for solar water splitting[J]. Nature Communications, 2016, 7: 12552.
[9]  Rothschild A, Dotan H. Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis[J]. ACS Energy Letters, 2017, 2(1): 45-51.
[10]  Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.
[11]  Voiry D, Yamaguchi H, Li J W, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nature Materials, 2013, 12(9): 850-855.
[12]  Wang Y Y, Zhang Y Q, Liu Z J, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2017, 56(21): 5867-5871.
[13]  Li F L, Shao Q, Huang X Q, et al. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie-International Edition, 2018, 57(7): 1888-1892.
[14]  Xu W W, Lu Z Y, Wan P B, et al. High-performance water electrolysis system with double nanostructured superaerophobic electrodes[J]. Small, 2016, 12(18): 2492-2498.
[15]  Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+[J]. Science, 2008, 321(5892): 1072-1075.
[16]  Yang T L(杨太来), Dong W Y(董文燕), Yang H M(杨慧敏), et al. Preparation and properties of binary oxides CoxCr1-xO3/2 electrocatalysts for oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2015, 21(2):
187-192.
[17]  Wu Z X(吴则星), Wang J(王杰), Guo J P(郭军坡), et al. Recent progresses in molybdenum-based electrocatalysts for the hydrogen evolution reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 192-204.
[18]  Berger A, Segalman R A, Newman J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell[J]. Energy & Environmental Science, 2014, 7(4): 1468-1476.
[19]  Chen P, Xu K, Fang Z W, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(49): 14710-14714. 
[20]  Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281.
[21]  You B, Liu X, Jiang N, et al. General strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. Journal of the American Chemical Society, 2016, 138, 41: 13639-13646.
[22]  Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014, 345(6202): 1326-1330.
[23]  Chen L, Dong X L, Wang Y G, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communications, 2016, 7: 11741.
[24]  Landman A, Dotan H, Shter G E, et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells[J]. Nature Materials, 2017, 16(6): 645-651.
[25]  Ma Y Y, Dong X L, Wang R H, et al. Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production[J]. Energy Storage Materials, 2018, 11: 260-266.
[26]  Muench S, Wild A, Friebe C, et al. Polymer-based organic batteries[J]. Chemical Reviews, 2016, 116: 9438-9484.
[27]  Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017, 16(8): 841-848.
[28]  Dong X L, Yu H C, Ma Y Y, et al. All-organic rechargeable battery with reversibility supported by “water-in-salt”electrolyte[J]. Chemistry-A European Journal, 2017, 23(11): 2560-2565.
[29]  Ma Y Y, Dong X L, Wang Y G, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018, 57(11): 2904-2908.
[30]  Lakshmanan S, Murugesan T. The chlor-alkali process: Work in progress[J]. Clean Technologies and Environmental Policy, 2013, 16(2): 225-234.
[31]  Fauvarque J. The chlorine industry[J]. Pure and Applied Chemistry, 1996, 68(9): 1713-1720.
[32]  Hou M Y, Chen L, Guo Z W, et al. A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production[J]. Nature Communications, 2018, 9: 438.

文章导航

/