欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

钕掺杂二氧化铅复合阳极的电化学性能研究

  • 王鸿辉 ,
  • 马明洁 ,
  • 冯婕 ,
  • 康黄雅 ,
  • 黄文杰
展开
  • 1. 厦门大学嘉庚学院环境科学与工程学院,河口生态安全与环境健康福建省高校重点实验室,福建 漳州 363105;2. 厦门大学环境与生态学院,福建 厦门 361102

收稿日期: 2018-04-11

  修回日期: 2018-05-02

  网络出版日期: 2018-05-23

基金资助

福建省教育厅科技项目(No. JAT160647)资助

Electrochemical Performances of Neodymium Doped Lead Dioxide Composite Anode

  • WANG Hong-hui ,
  • MA Ming-jie ,
  • FENG Jie ,
  • KANG Huang-ya ,
  • HUANG Wen-jie
Expand
  • 1. Key Laboratory of Estuarine Ecological Security and Environmental Health, Fujian Province University; School of Environmental Science and Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363105, Fujian, China; 2. College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2018-04-11

  Revised date: 2018-05-02

  Online published: 2018-05-23

摘要

利用电沉积法制备了钕(Nd)掺杂钛(Ti)基二氧化铅(PbO2)复合阳极,采用扫描电子显微镜(SEM)、X 射线衍射(XRD)、电化学阻抗谱、线性扫描伏安法、循环伏安法等对所制备电极的表面形貌、物相组成及电化学性能进行了分析. 结果表明,Nd 掺杂使得 PbO2 阳极表面颗粒变小、结构更加致密,增大了电极比表面积,改善了电极电化学性能. PbO2 PbO2-Nd 阳极表层主要为β- PbO2Nd 掺杂提高了β- PbO2 的结晶纯度,改变了表面相的相对丰度,促进了β(101)晶面形成. PbO2-Nd 阳极具有更小的电化学反应电阻,更高的析氧电位,更强的电子交换能力和更长的使用寿命. 将所制备电极应用于处理苯酚模拟难降解有机废水,PbO2-Nd 阳极对苯酚具有更好的电催化氧化效果,降解3 h,苯酚去除率达85.7%COD 去除率达73.8%. 循环使用6 次,PbO2-Nd 阳极电催化活性无明显衰减,显示出更好的电催化耐久性.

本文引用格式

王鸿辉 , 马明洁 , 冯婕 , 康黄雅 , 黄文杰 . 钕掺杂二氧化铅复合阳极的电化学性能研究[J]. 电化学, 2018 , 24(4) : 367 -374 . DOI: 10.13208/j.electrochem.180411

Abstract

Neodymium (Nd) doped titanium (Ti)-based lead dioxide (PbO2) composite anode was prepared by electrodeposition. The surface morphologies and crystal structures of the as-prepared anodes were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) technique, respectively. The electrochemical performances of PbO2-Nd anode were studied by electrochemical impedance spectroscopy, linear sweep voltammetry and cyclic voltammetry. Additionally, the electrocatalytic activity and durability of PbO2-Nd anode were investigated through the degradation of simulative refractory organic wastewater of phenol. The results showed that Nd doping made the PbO2 anode surface structure dense and uniform with smaller sized crystal particles, which increased the specific surface area and improved the electrochemical properties of the anode. The surface crystal structures of PbO2 and PbO2-Nd anodes were mainly composed of β-PbO2. Furtheremore, Nd doping improved the crystal purity of β-PbO2, changed the relative abundance of the surface phase and promoted the formation of β(101) crystal plane. Moreover, the PbO2-Nd anode exhibited smaller electrochemical reaction resistance, higher oxygen evolution potential, stronger electron exchange capacity and longer life time than PbO2 anode. Upon electrocatalytic degradation of phenol wastewater with the PbO2-Nd anode for
3 h, the removal rate of phenol and COD reached 85.7% and 73.8%, respectively. The electrocatalytic activity of the PbO2-Nd anode had no significant attenuation after being used for 6 times. The PbO2-Nd anode possessed better electrocatalytic activity and durability than PbO2 anode.

参考文献

[1] Velichenko A B, Devilliers D. Electrodeposition of fluorine-doped lead dioxide[J]. Journal of Fluorine Chemistry,2007, 128(4): 269-276.

[2] Velichenko A B, Amadelli R, Zucchhini G L, et al. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts[J]. Electrochimica Acta, 2000, 45(25/26): 4341-4350.

[3] Rosestolato D, Amadelli R, Velichenko A B. Electrode characteristics for ozone production: A case study using undoped and doped PbO2 on porous platinised titanium substrates[J]. Journal of Solid State Electrochemistry, 2016, 20(4): 1181-1190.

[4] Xia Y J, Dai Q Z, Chen J M. Electrochemical degradation of aspirin using a Ni doped PbO2 electrode[J]. Journal of Electroanalytical Chemistry, 2015, 744: 117-125.

[5] Yang W H, Yang W T, Lin X Y. Preparation and characterization of a novelBi-doped PbO2 electrode[J].Acta Physico-Chimica Sinica, 2012, 28(4): 831-836.

[6] Dai Q Z, Shen H, Xia Y J, et al. Typical rare earth doped lead dioxide electrode: Preparation and application[J]. International Journal of Eletrochemical Science, 2012, 7 (10):10054-10062.

[7] Jin Y, Wang W F, Xu M, et al. Preparation and characterization of Ce and PVP co-doped PbO2 electrode for wastewater treatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51: 135-142.

[8] Dai Q Z, Xia Y J, Chen J M. Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode[J]. Electrochimica Acta, 2016, 188: 871-881.

[9] Xu M(徐迈), Wang F W(王凤武), Liang X(梁铣), et al.Preparations and characterizations of Ti/PbO2 electrodes modified with rare earth of praseodymium and PVP in electrochemical degradation of organics[J]. Journal of Electrochemistry(电化学), 2017, 23(3): 340-346

[10] Li S P, Wang H B, Lian J F, et al. Advanced materials research[M]. Switzerland:Trans Tech Publications Ltd, 2012:1356-1360.

[11] Polcaro A M, Palmas S, Renoldi F, et al. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment [J]. Journal of Applied Electrochemistry,1999, 29 (2):147-151.

[12] National Environmental Protection Agency(国家环保局). Monitoring and analyzing methods of water and wastewater [M]. Beijing: China Environmental Science Press (中国环境出版社), 2002: 460-462.

[13] Zhao J J, Peng R, Pan Y P, et al. COD removal from phenol solution by heterogeneous Fenton reaction using Fe2O3/SiO2 catalysts: Effects of calcination temperature on the catalyst properties[J]. Indian Journal of Chemical Technology, 2017, 24(4): 424-429.

[14] Cao J L, Zhao H Y, Cao F H, et al. The influence of Fdoping on the activity of PbO2 film electrodes in oxygen evolution reaction[J]. Electrochemica Acta, 2007, 52(28):7870-7876.

[15] Chen T, Huang H, Ma H Y, et al. Effects of surface morphology of nano-structured PbO2 thin films on their electrochemical properties[J]. Electrochemica Acta, 2013, 88:79-85.

[16] Song Y H, Wei G, Xiong R C. Structure and properties of PbO2-CeO2 anodes on stainless steel [J]. Electrochimica Acta, 2007, 52(24): 7022-7027.

[17] Wu J, Xu H, Yan W. Fabrication and characterization of β-PbO2/α-PbO2/Sb-SnO2/TiO2 nanotube array electrode and its application in electrochemical degradation of acid red G[J]. RSC Advances, 2015, 5(25): 19284-19293.

[18] Wang Z C, Xu M, Wang F W, et al. Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater[J]. Electrochimica Acta, 2017, 247: 535-547.

[19] Zhang L(张力), Dong W Y(董文燕), Yang T L(杨太来), et al. Preparation of ZrO2-doped Nb/PbO2 electrode and electrocatalytic performance of methyl orange degradation[J]. Journal of Electrochemistry(电化学), 2015, 21(3):294-298.

[20] Zhao W, Xing J T, Chen D H, et al. Study on the performance of an improved Ti/SnO2-Sb2O3/PbO2 based on porous titanium substrate compared with planar titanium substrate[J]. RSC Advances, 2015, 5(34): 26530-20539.

[21] Chen Z, Yu Q , Liao D H, et al. Influence of nano-CeO2 on coating structure and properties of electrodeposited Al/α-PbO2/β-PbO2[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1382-1389.

[22] Zheng H(郑辉), Dai Q Z(戴启洲), Wang J D(王家德), et al. Preparation and electro-catalytic characterization on La/Ce doped Ti-base lead dioxide electrodes[J]. Environmental Science(环境科学), 2012, 33(3): 857-865.

[23] Duo I, Fujishima A, Comninellis C. Electron transfer kinetics on composite diamond (sp3)-graphite (sp2) electrodes[J]. Electrochemistry Communications, 2003, 5(8):695-700.

[24] Li Q, Zhang Q, Cui H, et al. Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of Rhodamine B[J].Chemical Engineering Journal, 2013, 228: 806-814.

[25] Wang Z C, Xu M, Wang F W, et al. Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater[J]. Electrochemica Acta, 2017, 247: 535-547.

[26] Xu Z S, YuY X, Liu H, et al. Highly efficient and stable Zr-doped nanocrystalline PbO2 electrode for mineralization of perfluorooctanoic acid in a sequential treatment system[J]. Science of the Total Environment, 2017, 579:1600-1607.

[27] Xu H, Yuan Q S, Shao D, et al. Fabrication and characterization of PbO2 electrode modified with [Fe(CN)6]3- and its application on electrochemical degradation of alkalilignin[J]. Journal of Hazardous Materials, 2015, 286(25):509-516.

[28] Ji Y F(季跃飞), Wei J(魏杰), Wang D T(王东田). Preparation of four DSAs and comparison of their electro-catalytic activity[J]. The Chinese Journal of Process Engineering(过程工程学报), 2012, 12(2): 345-348.

[29] Yang W H, Wang H H, Fu F. Preparation and performance of Ti/Sb-SnO2/β-PbO2 electrode modified with rare earth[J]. Rare Metal Materials and Engineering, 2010, 39(7): 1215-1218.

 

文章导航

/