欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

含硫添加剂对石墨负极低温性能的研究

  • 吴则利 ,
  • 郑烨珍 ,
  • 张忠如 ,
  • 杨勇
展开
  • 固体表面物理化学国家重点实验室,厦门大学化学化工学院,福建 厦门 361005

收稿日期: 2018-03-22

  修回日期: 2018-04-09

  网络出版日期: 2018-04-28

基金资助

福建省科技创新领军人才项目及福建省科技重大专项(No. 2014HZ0002-1)资助

Effects of Sulfur-Containing Additive on Low Temperature Performance of Graphite Anode

  • WU Ze-li ,
  • ZHENG Ye-zhen ,
  • ZHANG Zhong-ru ,
  • YANG Yong
Expand
  • State Key Lab for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2018-03-22

  Revised date: 2018-04-09

  Online published: 2018-04-28

摘要

锂离子电池的低温性能主要取决于石墨负极,通过添加剂来改善负极的低温性能是研究的焦点之一. 本文比较了3种具有不同含硫官能团的添加剂DTD(ethylene sulfate)、1,3-PS(1,3-propane sultone)和ES(ethylene sulfite)对传统商业化材料人造石墨负极低温性能的影响. DFT(密度泛函理论)计算、扫描伏安法(CV)、扫描电子显微镜(SEM)和电化学测试结果表明,3种含硫添加剂均可在人造石墨负极表面参与成膜,并对其低温性能产生比较大的影响. 其中,DTD对石墨负极低温性能改善最为明显,1,3-PS对石墨负极的低温性能造成不利影响,而ES则没有明显作用. 电化学交流阻抗(EIS)和X射线光电子能谱(XPS)表明,这3种添加剂的不同作用主要在于其所形成的电极界面膜在电化学阻抗方面存在着明显的差异.

本文引用格式

吴则利 , 郑烨珍 , 张忠如 , 杨勇 . 含硫添加剂对石墨负极低温性能的研究[J]. 电化学, 2018 , 24(5) : 529 -537 . DOI: 10.13208/j.electrochem.180322

Abstract

The low temperature performance of lithium ion battery mainly depends on the graphite anode, and one of the research focuses is to improve the low temperature performance of the anode by additives. In this paper, the effects of different sulfur-containing functional groups such as DTD (ethylene sulfate), 1,3-PS (1,3-propane sultone) and ES (ethylene sulfite) on low temperature performances of artificial graphite materials were systematically studied. The results in density functional theory (DFT) calculations, cyclic voltammetry (CV), scanning electron microscopy (SEM) and charge-discharge measurement clearly demonstrated that all three sulfur-containing additives could participate in formation of films on the surface of electrode, which had a greater impact on the low temperature properties. The apparent enhancement was achieved with DTD because of the film formed with a smaller resistance. In contrast, the reduced performance was observed with 1,3-PS due to its non-conductive film formed at low temperatures, while no obvious effect with ES. The data in electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) indicated that these three kinds of additives influenced differently the low temperature performances of lithium ion battery due mainly to their significantly different impedances resulted from the films formed at the interfaces of electrodes.

参考文献

[1]  Jurng S, Park S, Yoon T, et al. Low-temperature performance improvement of graphite electrode by allyl sulfide additive and its film-forming mechanism[J]. Journal of the Electrochemical Society, 2016, 163(8): A1798-A1804.
[2]  Zhang G Q(张国庆), Ma L(马莉), Ni P(倪佩), et al. Research progress of low temperature electrolytes for Li-ion batteries[J]. Chemical Industry and Engineering Progress(化工进展), 2008, 27(2): 209-213.
[3]  Bian F J(卞锋菊), Zhang Z R(张忠如), Yang Y(杨勇). Effect of fluoroethylene carbonate additive on low temperature performance[J]. Journal of Electrochemistry(电化学), 2013, 19(4): 355-360.
[4]  Yang C W(杨春巍), Wu F(吴锋), W B R(吴伯荣), et al. Low temperature performance of Li-ion battery with fluoroethylene carbonate electrolyte[J]. Journal of Electrochemisty(电化学), 2011, 17(1): 63-66.
[5]  Xia J, Sinha N N, Chen L P, et al. A comparative study of a family of sulfate electrolyte additives[J]. Journal of the Electrochemical Society, 2014, 161(3): A264-A274.
[6]  Xu M, Li W, Lucht B L. Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2009, 193(2): 804-809.
[7]  Huang W N, Xing L D, Zhang R Q, et al. A novel electrolyte additive for improving the interfacial stability of high voltage lithium nickel manganese oxide cathode[J]. Journal of Power Sources, 2015, 293: 71-77.
[8]  Bi T Y, Wei H Q, Fu S L, et al. A study on sulfites for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2006, 158(2): 1373-1378.
[9]  Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114.
[10]  Zhang S S, Xu K, Allen J L, et al. Effect of propylene carbonate on the low temperature performance of Li-ion cells[J]. Journal of Power Sources, 2002, 110(1): 216-221.
[11]  Huang C K, Sakamoto J S, Wolfenstine J, et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893-2896.
[12]  Mendoza-Hernandez O S, Ishikawa H, Nishikawa Y, et al. State of charge dependency of graphitized-carbon-based reactions in a lithium-ion secondary cell studied by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2014, 131(S1): 168-173.
[13]  Madec L, Petibon R, Tasaki K, et al. Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi1/3Mn1/3Co1/3O2/graphite pouch cells: Electrochemical, GC-MS and XPS analysis[J]. Physical Chemistry Chemical Physics, 2015, 17(40): 27062-27076.
[14]  Hall D S, Allen J P, Glazier S L, et al. The solid-electrolyte interphase formation reactions of ethylene sulfate and its synergistic chemistry with prop-1-ene-1,3-sultone in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(14): A3445-A3453.
[15]  Kang B, Jung Y J. Understanding abnormal potential behaviors at 1st charge in Li2S cathode material for rechargeable Li-S battery[J]. Physical Chemistry Chemical Physics, 2016, 18(31): 21500-21507.

文章导航

/