欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

脉冲电沉积抑制锂枝晶生成的研究

  • 郭文君 ,
  • 李紫琼 ,
  • 柯若昊 ,
  • 钮东方 ,
  • 徐衡 ,
  • 张新胜
展开
  • 1.华东理工大学 化学工程联合国家重点实验室,上海 200237 ;2.石油化工新材料协同创新中心, 安徽 安庆 246011

收稿日期: 2017-05-03

  修回日期: 2017-05-12

  网络出版日期: 2018-04-20

基金资助

安徽省石油化工新材料协同创新中心资助

A Study of Pulse Electrodeposition on Suppressing the Formation of Lithium Dendrite

  • GUO Wen-jun ,
  • LI Zi-qiong ,
  • KE Ruo-hao ,
  • NIU Dong-fang ,
  • XU Heng ,
  • ZHANG Xin-sheng
Expand
  • 1.State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; 2.Collaborative Innovation Center for Petrochemical New Materials, Anqing 246011, Anhui, China

Received date: 2017-05-03

  Revised date: 2017-05-12

  Online published: 2018-04-20

摘要

采用脉冲充电方法替代传统充电方法,研究了在有机电解液 0.5 mol·L-1 LiBr/PC (碳酸丙烯酯)中,在铜电极上沉积锂的表面变化. 扫描电镜观测结果显示,在传统直流充电时电极表面明显地出现了枝晶,而使用脉冲充电时能够抑制枝晶的生长. 交流阻抗测试结果显示,在占空比为 0.5 时,沉积锂表面固体电解质界面(solid electrolyte interphase,SEI)膜电阻最大,沉积锂表面枝晶较少;单次脉冲电沉积时间过长,会使沉积锂表面 SEI 膜电阻减小,沉积锂表面枝晶增加;电流密度大于等于 2 mA·cm-2时,脉冲电沉积可有效抑制枝晶生长.

本文引用格式

郭文君 , 李紫琼 , 柯若昊 , 钮东方 , 徐衡 , 张新胜 . 脉冲电沉积抑制锂枝晶生成的研究[J]. 电化学, 2018 , 24(3) : 246 -252 . DOI: 10.13208/j.electrochem.170503

Abstract

A pulse charge method was used to suppress the formation of lithium dendrite on the copper electrode in 0.5 mol·L-1 LiBr/propylene carbonate (PC) electrolyte. The surface variation of lithium deposition was investigated by scanning electron microscope and impedance measurement. The SEM test showed that the lithium dendrites were formed on the copper electrode during the traditional process of electrodeposition. However, the formed dendrite was suppressed by pulse charge method. The results of the impedance measurement confirmed that the pulse electrodeposition could suppress the dendrite under the optimized duty ratio (0.5). The long single pulse deposition time decreased the resistance of SEI film and led to the lithium dendrite growth. The current density had an effect on dendrite and the dendrite could be effectively suppressed with no less than 2 mA·cm-2 of current density.

参考文献

[1]  Li Z, Huang J, Liaw B Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182.
[2]  Chang Y Q, Li H, Wu L, et al. Irreversible capacity loss of graphite electrode in lithium-ion batteries[J]. Journal of Power Sources, 1997, 68(2): 187-190.
[3]  Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29.
[4]  Zhang Y H, Qian J F, Xu W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12): 6889-6896.
[5]  Zu C, Manthiram A. Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries[J]. The Journal of Physical Chemistry Letters, 2014, 5(15): 2522-2527.
[6]  Wu M F(吴梅芬), Wen Z Y(温兆银), Liu Y(刘宇). Effects of tetrahydrofuran pretreatment on the performance of pyrrole modified Li metal electrode[J]. Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(7): 1695-1700.
[7]  Basile A, Bhatt A I, O’mullane A P. Stabilizing lithium metal using ionic liquids for long-lived batteries[J]. Nature Communications, 2016, 7: 11794.
[8]  Zhang Y J, Wang W, Tang H, et al. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries[J]. Journal of Power Sources, 2015, 277: 304-311.
[9]  Wang D L(王殿龙), Wang C(王崇), Dai C S(戴长松). Research on lithium foam anode in rechargeale lithium metal batteries[C]//Chinese Society of Electrochemistry, Yangzhou University, Yangzhou, China. The 14th National Conference on Elcetrochemistry, November 2-6, 2007: 1212-1213.
[10]  Chung J H, Kim W S, Yoon W Y, et al. Electrolyte loss and dimensional change of the negative electrode in Li powder secondary cell[J]. Journal of Power Sources, 2006, 163(1): 191-195.
[11]  Chen L(陈玲), Li X L(李雪莉), Zhao Q, et al. Bipolar pulse current charge method for inhibiting the formation of lithium dendrite[J]. Acta Physico-Chimica Sinica(物理化学学报), 2006, 22(9): 1155-1158.
[12]  Han M X(韩苗兴), He Y F(何永夫). The application of plating with pulse power supply[J]. Surface Technology(表面技术), 2002, 31(3): 64-66.
[13]  Qiao G Y(乔桂英), Jing T F(荆天辅), Xiao F R(肖福仁), et al. Study on microstructure of pulse electro plated buck nanocrystalline Co-Ni alloy[J]. Acta Metallurgica Sinica(金属学报), 2001, 37(8): 815-819.
[14]  Zhang H(张欢), Guo Z C(郭忠诚), Han X Y(韩夏云). Process of pulse electrodeposition of Re-Ni-W-P-SiC composite coatings[J]. Materials for Mechanical Engineering(机械工程材料), 2004, 28(7): 29-31.
[15]  Aryanfar A, Brooks D, Merinov B V, et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and monte carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726.
[16]  Mayers M Z, Kaminski J W, Miller T F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26214-26221.
[17]  Orsini F, Dollé M, Tarascon J M. Impedance study of the Li/electrolyte interface upon cycling[J]. Solid State Ionics, 2000, 135(1): 213-221.
[18]  Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3/4): 405-416.
[19]  Yamaki J I, Tobishima S I, Hayashi K, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte[J]. Journal of Power Sources, 1998, 74(2): 219-227.

文章导航

/