欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

玻碳电极表面复合配位银电结晶机理研究

  • 黄帅帅 ,
  • 刘诚 ,
  • 金磊 ,
  • 杨防祖 ,
  • 田中群 ,
  • 周绍民
展开
  • 厦门大学化学化工学院, 固体表面物理化学国家重点实验室, 福建厦门 361005

收稿日期: 2018-01-05

  修回日期: 2018-03-12

  网络出版日期: 2018-04-04

基金资助

国家自然科学基金项目(No. 21621091)

Complex Coordination Silver Electrocrystallization Mechanism on Glassy Carbon Electrode Surface

  • HUANG Shuai-shuai ,
  • LIU Cheng ,
  • JIN Lei ,
  • YANG Fang-zu ,
  • TIAN Zhong-qun ,
  • ZHOU Shao-min
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2018-01-05

  Revised date: 2018-03-12

  Online published: 2018-04-04

Supported by

National Natural Science Foundation of China(No. 21621091)

摘要

以具有实际应用价值的复合配位体系无氰镀银电解液为研究对象, 运用循环伏安和电位阶跃等实验方法, 结合 Scharifker-Hill 经典理论模型分析, 成功获得了Ag在玻碳电极(GCE)表面电沉积的成核机理及成核动力学参数, 并分析了温度对成核方式及成核动力学参数的影响. 结果表明, 该体系下Ag在GCE表面的电沉积是由扩散控制的不可逆过程, 遵循三维瞬时成核生长机理. 随着阶跃电位从-750 mV 负移至-825 mV, 峰值还原电流Im逐渐增大, 达到峰值还原电流所需时间tm逐渐缩短; 扩散系数D变化不大, 基本稳定在(7.61±0.34)×10-5 cm2·s-1; 成核密度数N0则从3.26 ×105 cm-2提高至10.2×105 cm-2. 银沉积初期的形貌观察, 验证了其三维瞬时成核生长机理. 提高温度可以显著改善电解液中具备活性的银配位离子的扩散能力, 缩短成核时间, 提升成核密度数N0.

本文引用格式

黄帅帅 , 刘诚 , 金磊 , 杨防祖 , 田中群 , 周绍民 . 玻碳电极表面复合配位银电结晶机理研究[J]. 电化学, 2018 , 24(4) : 344 -350 . DOI: 10.13208/j.electrochem.180105

Abstract

Cyclic voltammetry and potential step methods were successfully used to study the electrochemical crystallization mechanism of silver deposition on glassy carbon electrode (GCE) in the practical cyanide-free silver plating electrolyte containing composite complexing agents. Scharifker-Hill (SH) theory was used to fitting the experimental data. The results showed that the electrodeposition of silver is a diffusion controlled irreversible electrode process according to three-dimensional instantaneous nucleation mechanism. When the step potential shifted from -750 mV to -825 mV, the peak deposition current Im was increased, while the induced nucleation time tm shortened. The calculated kinetic parameters showed that the diffusion coefficient (D) was basically constant, ranged (7.31 ±0.34) ×10-5 cm2·s-1, and the active nucleation sites density (N0) increased from 3.26 ±105 cm-2 to 10.2±105 cm-2. The morphologies for the initial deposition of Ag verified the three-dimensional instantaneous nucleation mechanism. Increasing the temperature could significantly improve the diffusion ability of the active silver coordination ions in the electrolyte, which shortened the nucleation time and enhanced the active nucleation sites density N0.

参考文献

[1] Gad S C, Pham T. Silver [M]. Encyclopedia of Toxicology (Third Edition), edn. Edited by Wexler P. Oxford: Academic Press; 2014: 273-275.

[2] Florian C, Caballero-Lucas F, Fernández-Pradas JM, et al. Conductive silver ink printing through the laser-induced forward transfer technique[J]. Applied Surface Science, 2015, 336(Supplement C):304-308.

[3] Karuppusamy S, Demudu Babu G, Venkatesh VK, et al.Highly conductive nano-silver textile for sensing hydrogen peroxide[J]. Journal of Electroanalytical Chemistry, 2017, 799:473-480.

[4] Hernández-Santos D, González-García M B, Costa-García. Effect of metals on silver electrodeposition: Application to the detection of cisplatin[J]. Electrochimica Acta, 2005, 50(9):1895-1902.

[5] Gómez E, García-Torres J, Vallés. Electrodeposition of silver as a precursor matrix of magnetoresistive materials[J]. Materials Letters, 2007, 61(8):1671-1674.

[6] Chen H, Liao F, Yuan Z, et al. Simple and fast fabrication of conductive silver coatings on carbon fabrics via an electroless plating technique[J]. Materials Letters, 2017, 196(Supplement C):205-208.

[7] Turner E. 19 - Silver plating in the 18th century[M].  Metal Plating and Patination, 1993:211-222.

[8] Blair A. Silver plating[J]. Metal Finishing, 2002, 100(Supplement 1):284-290.

[9] Ren F Z, Yin L T, Wang S S, et al. Cyanide-free silver electroplating process in thiosulfate bath and microstructure analysis of Ag coatings[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12):3822-3828.

[10] Su Y T(苏永堂), Cheng D H(成旦红), Li K J(李科军), et al. Study on the Thiosulfate Cyanide-free Silver Pulse Plating Process[J]. Plating and Finishing(电镀与精饰), 2005, 27(02):14-18.

[11] Yang C(杨晨), Liu D F(刘定富). The impact of DMH on succinimide cyanide-free silver Plating[J]. Plating and Finishing(电镀与精饰), 2015, 37(03):28-31.

[12] Masaki S, Inoue H, Honma. Dissolution behavior of silver anode in succinimide-silver complex bath[J]. Metal Finishing, 1998, 96(5):52-54.

[13] Zarkadas G M, Stergiou A, Papanastasiou G. Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions[J]. Electrochimica Acta, 2005, 50(25–26):5022-5031.

[14] Lu J F(卢俊峰) , An M Z(安茂忠) , Zheng H Y(郑环宇), et al. Study on 5,5-Dimethyl Hydantoin Cyanide-free Silver Electroplating Process[J]. Electroplating &Pollution Control(电镀与环保), 2007, 27(01):13-15.

[15] Yang P X(杨培霞), Wu Q L(吴青龙), An M Z(安茂忠), et al. Influence of PotassiumPyrophosphate on DMH cyanide-free silver electroplating[J]. Electroplating &Pollution Control(电镀与环保), 2008, 28(05):22-24.

[16] Bomparola R, Caporali S, Lavacchi A, et al.Silver electrodeposition from air and water-stable ionic liquid: An environmentally friendly alternative to cyanide baths[J]. Surface and Coatings Technology, 2007, 201(24):9485-9490.

[17] Abbott A P, McKenzie K J. Application of ionic liquids to the electrodeposition of metals.[J] Physical Chemistry Chemical Physics, 2006, 8 (37): 4265-4279.

[18] de Oliveira G M, Barbosa L L, Broggi R L, et al. Voltammetric study of the influence of EDTA on the silver electrodeposition and morphological and structural characterization of silver films[J]. Journal of Electroanalytical Chemistry, 2005, 578(1):151-158.

[19] Oliveira M R S, Mello D A A, Ponzio E A, et al. KI effects on the reversible electrodeposition of silver on poly(ethylene oxide) for application in electrochromic devices[J]. Electrochimica Acta, 2010, 55(11):3756-3765.

[20] Hu J(胡进), Wu H M(吴慧敏), Feng X M(冯祥明),et al. Effect of the Brightener on the Behavior of the Silver Electrodeposition[J]. Journal of Electrochemistry(电化学), 2002, 8(01): 78-85.

[21] Wang L(王磊), Xue J Q(薛娟琴), Yu L H(于丽花),et al. Effects of temperature on the nucleation and growth mechanism of PbO2 electrodeposition[J]. Journal of Electrochemistry(电化学), 2017, 23(04): 480-488.

[22] He P, Liu H T, Li Z Y, et al. Electrochemical deposition of silver in room-temperature ionic liquids and its surface-enhanced Raman scattering effect[J]. Langmuir, 2004, 20(23):10260-10267.

[23] Lin Z B, Xie B G, Chen JS, et al. Nucleation mechanism of silver during electrodeposition on a glassy carbon electrode from a cyanide-free bath with 2-hydroxypyridine as a complexing agent[J]. Journal of Electroanalytical Chemistry, 2009, 633 (1): 207-211.

[24] Sebastián P, Vallés E, Gómez E. First stages of silver electrodeposition in a deep eutectic solvent. Comparative behavior in aqueous medium[J]. Electrochimica Acta, 2013, 112(8):149-158.

[25] Farahi A, Achak M, El Gaini L, et al. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode[J]. Journal of Food and Drug Analysis, 2015, 23(3):463-471.

[26] Rapecki T, Stojek Z, Donten M. Nucleation of metals on conductive polymers: Electrodeposition of silver on thin polypyrrole films[J]. Electrochimica Acta, 2013, 106(05):264-271.

[27] Basile A, Bhatt AI, O’Mullane A P, et al. An investigation of silver electrodeposition from ionic liquids: Influence of atmospheric water uptake on the silver electrodeposition mechanism and film morphology[J]. Electrochimica Acta, 2011, 56(7):2895-2905.

[28] Yang F Z(杨防祖), Huang S S(黄帅帅). A composition and its application for cyanide free silver plating electrolyte
based on the composite complexing agents: China Patent, 201711012022.X[P].2017112800617690.
  

[29] Fleischmann M, Thirsk H R. The potentiostatic study of the growth of deposits on electrodes[J]. Electrochimica Acta, 1959, 1(2): 146-160.

[30] Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.

[31] Scharifker B R, Mostany J. Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 177(1/2): 13-23.

[32] Budevski E, Staikov G, Lorenz WJ. Electrocrystallization Nucleation and growth phenomena[J]. Electrochimica Acta, 2000, 45(15-16):2559-2574.

[33] Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision[J]. Electrochimica Acta, 1983, 28(7): 917-923.

[34] Fletcher S, Halliday C S, Gates D, et al. The response of some nucleation/growth processes to triangular scans of potential[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1983, 159(2): 267-285.

[35] Pandey, R K; Sahu, S N; Chandra, S. Handbook of semiconductor electrodeposition[M]; Marcel Dekker Inc.: New York, 1996.

[36] Reyna-González J M, Reyes-López J C, Aguilar-Martínez M. Silver and silver–copper electrodeposition from a pyridinium-based ionic liquid[J]. Electrochimica Acta 2013, 94, 344-352.

文章导航

/