欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Ag-TiO2-MnO2复合材料的制备与电化学性能研究

  • 张伶潇 ,
  • 赵惠慧 ,
  • 张丽娟 ,
  • 付予
展开
  • 北京工业大学环境与能源工程学院 化学与化工系绿色催化与分离重点实验室,北京 100124

收稿日期: 2017-11-30

  修回日期: 2018-01-09

  网络出版日期: 2018-03-12

基金资助

北京市属高校高水平教师队伍建设支持计划(No. IDHT20180504)及17内涵发展-课程和教材建设-优质教学资源立项(No. 310000514117026)资助

Preparation and Electrochemical Performance of Ag-TiO2-MnO2 Composites

  • ZHANG Ling-xiao ,
  • ZHAO Hui-hui ,
  • ZHANG Li-juan ,
  • FU Yu
Expand
  • Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China

Received date: 2017-11-30

  Revised date: 2018-01-09

  Online published: 2018-03-12

摘要

采用高温固相法制备了Ag-TiO2共修饰的二氧化锰锂电池阴极材料,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅立叶红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)、能量散射X射线能谱(EDS)、循环伏安测试(CV)、恒流放电测试、交流阻抗测试(EIS)等分别检测了所制备样品的物理-化学特性及相应的电化学性能特征.结果表明:空白二氧化锰与修饰后二氧化锰均为β 晶型,相比于未修饰样品,Ag-TiO2-MnO2 样品的形貌得到了明显的改变.修饰后样品大倍率的放电比容量显著提升,1C 下的容量由 75mAh·g-1 增加到 115mAh·g-1Ag-TiO2-MnO2 样品 Mn-O 键能的增强对于抑制放电过程中体积膨胀也有一定作用,可以使二氧化锰材料保持较好的结构稳定性.

本文引用格式

张伶潇 , 赵惠慧 , 张丽娟 , 付予 . Ag-TiO2-MnO2复合材料的制备与电化学性能研究[J]. 电化学, 2018 , 24(3) : 292 -299 . DOI: 10.13208/j.electrochem.171130

Abstract

 The silver-titanium dioxide  co-modified manganese dioxide (Ag-TiO2-MnO2) cathode material was prepared through high temperature solid state reaction. The microstructure, phase composition and electrochemical performance of the prepared samples were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), Energy-dispersive X-ray spectroscopy (EDS), Cyclic voltammetry (CV), galvanostatic discharge and electrochemical impedance spectroscopy (EIS). Results showed that the unmodified and Ag-TiO2 modified MnO2 samples both exhibited β-MnO2 structurebut with different morphologies. The EDS mapping results revealed that Ag was uniformly dispersed on the surface of manganese dioxide, while Ti was relatively non-uniform in the Ag-TiO2-MnO2 sample. The modified samples were effective in improving specific discharge capacities. The specific discharge capacity increased from 75 mAh·g-1 to 115 mAh·g-1 at the rate of 1C. The stronger bond energy of Mn-O in the modified MnO2 could suppress the volume expansion during the discharge process, which can maintain the structural stability of the manganese dioxide material.

参考文献

[1]  Huang X K(黄行康), Chang H T(常海涛), Gan J L(甘健龙), et al. Preparation and electrochemical properties of layered manganese oxide(Li-birnessite type)[J]. Journal of Electrochemistry(电化学), 2009, 15(2): 194-197.
[2]  Gao J(高军), Huang X K(黄行康), Yang Y(杨勇). Electrochemical capacitance characteristics for MnO2/C composite[J]. Journal of Electrochemistry(电化学), 2007, 13(3): 279-283.
[3]  Li W N, Yuan J K, Gomez-Mower S, et al. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes[J]. Journal of Physical Chemistry B, 2006, 110(7): 3066-3070.
[4]  Liu Q L, Wang S P, Cheng H. High rate capabilities Fe-doped EMD electrodes for Li/MnO2 primary battery[J]. International Journal of Electrochemical Science, 2013, 8(8): 10540-10548.
[5]  Dawson J A, Tanaka I. Li intercalation into a β-MnO2 Grain Boundary[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8125-8131.
[6]  Wang S P, Liu Q L, Yu J X, et al. Anisotropic expansion and high rate discharge performance of V-doped MnO2 for Li/MnO2 primary battery[J]. International Journal of Electrochemical Science, 2012, 7(2): 1242-1250.
[7]  Zeng J, Wang S P, Liu Q L, et al. High-capacity V-/Sc-/Ti-doped MnO2 for Li/MnO2 batteries and structural changes at different discharge depths[J]. Electrochimica Acta, 2014, 127: 115-122.
[8]  Zeng J, Wang S P, Yu J X, et al. Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries[J]. Journal of Solid State Electrochemistry, 2014, 18(6): 1585-1591.
[9]  Guo D L, Wei X G, Chang Z R, et al. Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 632: 222-228.
[10]  Hu X F, Cheng F Y, Han X P, et al. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries[J]. Small, 2015, 11(7): 809-813.
[11]  Gheorghiu F, Simenas M, Ciomaga C E, et al. Preparation and structural characterization of Fe-doped BaTiO3 diluted magnetic ceramics[J]. Ceramics International, 2017, 43(13): 9998-10005.
[12]  Huang Z, Zhang M, Cheng J F, et al. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium-oxygen battery[J]. Journal of Alloys and Compounds, 2015, 626: 173-179.
[13]  Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell II. X-ray diffractional and electrochemical characterization on deep discharge products of electrolytic manganese dioxide[J]. Journal of the Electrochemical Society, 1990, 137(1): 40-46.
[14]  Wu M S, Chiang P C J, Lin J C. Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements[J]. Journal of the Electrochemical Society, 2005, 152(1): A47-A52.
[15]  Ogata A, Komaba S, Baddour-Hadjean R, et al. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta, 2008, 53(7): 3084-3093.
[16]  Wang J G, Yang Y, Huang Z H, et al. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors[J]. Journal of Power Sources, 2012, 204: 236-243.

文章导航

/