欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于钛酸锂负极和聚三苯胺正极的电池电容体系

  • 苏秀丽 ,
  • 董晓丽 ,
  • 刘瑶 ,
  • 王永刚 ,
  • 余爱水
展开
  • 1. 复旦大学化学系袁,上海 200438;2. 上海电气集团股份有限公司中央研究院,上海 200070

收稿日期: 2017-12-26

  修回日期: 2018-01-10

  网络出版日期: 2021-01-11

基金资助

国家自然科学基金项目(No. 21473040)资助

Hybrid Battery-Capacitor System based on LiTi5O12 Anode and PTPAn Cathode

  • SU Xiu-li ,
  • DONG Xiao-li ,
  • LIU Yao ,
  • WANG Yong-gang ,
  • YU Ai-shui
Expand
  • 1. Department of Chemistry, Fudan University, Shanghai 200438, China;
    2. Shanghai Elect Group Co Ltd, Center Academy, Shanghai 200070, China

Received date: 2017-12-26

  Revised date: 2018-01-10

  Online published: 2021-01-11

Supported by

The National Natural Science Foundation of China(No. 21473040)

摘要

由于高安全、高功率和超长循环寿命等优点,钛酸锂负极材料近年来得到了广泛关注,基于钛酸锂负极的高性能超级电池电容器和锂离子电池也成为近年来的研究热点. 本文采用化学氧化法制备了有机物正极材料聚三苯胺,并通过经典的电化学测试方法研究了其储能机理及相应的电极动力学过程. 研究结果表明,该有机物正极的储能机制主要是基于阴离子的吸脱附反应,并表现出85 mA·g-1的可逆容量,且其动力学过程不受扩散控制,属于典型的赝电容行为. 将该正极与钛酸锂负极结合构成了新型的电池电容体系,并对其电化学性能进行了研究,结果表明该体系具有高功率特性,且能量密度高于传统的混合型超级电容器. 此外,本文还对该有机物正极的不足和实际应用中所面临的挑战做了初步分析.

本文引用格式

苏秀丽 , 董晓丽 , 刘瑶 , 王永刚 , 余爱水 . 基于钛酸锂负极和聚三苯胺正极的电池电容体系[J]. 电化学, 2018 , 24(4) : 324 -331 . DOI: 10.13208/j.electrochem.171226

Abstract

Owing to its high safe, high rate and long life characteristics, lithium titanate (Li4Ti5O12) anode material has attracted extensive attention in recent years, and many efforts are being made to develop the Li4Ti5O12 based high performance hybrid supercapacitors and Li-ion batteries. Herein, we prepared the organic cathode material polytriphenylamine (PTPAn) through chemical oxidation and polymerization of triphenylamine (TPAn), and investigated its charge storage mechanism and electrode kinetics withthe typical electrochemical methods in an organic electrolyte. It was demonstrated that the PTPAn exhibited the reversible capacity of 85 mA·g-1. The charge storage depended on the reversible adsorption/desorption of anion, which is not controlled by the diffusion process, and thus, can be considered as the pseudocapacitive behavior. Then, the PTPAn cathode was coupled with the Li4Ti5O12 anode to form a hybrid capacitor/battery system with high power and improved energy density. Finally, the inherent drawback and the challenge for practical application of such an organic cathode are briefly discussed.

参考文献

[1] Shen L F, Yuan C Z, Luo H J, et al. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries[J]. Nanoscale, 2011, 3(2):572-574.
[2] Zhu G N, Wang C X, Xia Y Y. A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries[J]. Journal of Electrochemical Society, 2011, 158(2): A102-A109.
[3] Cheng L, Yan J, Zhu G N, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J]. Journal of Material Chemistry, 2010, 20(3): 595-602.
[4] Wang Y, Liu H, Wang K, et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon[J]. Journal of Material Chemistry, 2009, 19(37): 6789-6795.
[5] Kang E, Jung Y S, Kim G H, et al. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Advanced Functional material, 2011, 21(22): 4349-4357.
[6] Liu J L(刘金龙), Lu Z G(卢周广), Ren Y(任扬), et al.Preparation and modification of Li4Ti5O12 as anode materials for lithium-ion batteries[J]. Journal of Electrochemistry (电化学), 2012, 18(4): 342-347.
[7] Jung H G, Myung S T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy Environmental Science,2011, 4(4): 1345-1351.
[8] Zhu G N, Liu H J, Zhuang J H, et al. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries[J]. Energy Environmental Science, 2011, 4(10): 4016-4022.
[9] Huang S H, Wen Z Y, Zhu X J, et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochemical Communication, 2004, 6(11): 1093-1097.
[10] Huang S H, Wen Z Y, Zhu X J, et al. Preparation and electrochemical performance of spinel-type compounds Li4AlyTi5-yO12 (y = 0, 0.10, 0.15, 0.25)[J]. Journal of Electrochemical Society, 2005, 152(1): A186-A190.
[11] Huang S H, Wen Z Y, Lin B, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries[J]. Journal of Alloys Compound, 2008, 457(1/2): 400-403.
[12] Li N, Zhou G M, Li F, et al. A self-standing and flexible electrode of Li4Ti5O12 nanosheets with a N-doped carbon coating for high rate lithium ion batteries[J]. Advanced Functional Material, 2013, 23(43): 5429-5435.
[13] Ohzuku T, Tatsumi K, Matoba N, et al. Electrochemistry and structural chemistry of LiCrTiO4 (Fd3m) in nonaqueous lithium cells[J]. Journal of Electrochemical Society,2000, 147(10): 3592-3597.
[14] Wang Y F(王怡菲), Tang Y F(唐宇峰), Qiu Z(仇征), et al. Preparation and electrochemical behavior of Li4Ti5O12 nanosheets as anode material for lithium ion battery[J].Journal of Electrochemistry(电化学), 2010, 16(1): 46-50.
[15] Amatucci G G, Badway F, Du Pasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell [J]. Journal of Electrochemical Society, 2001, 148(8): A930-A939.
[16] Cheng L, Liu H J, Zhang J J, et al. Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors[J]. Journal of Electrochemical Society, 2006, 153(8): A1472-A1477.
[17] Belharouak I, Sun Y K, Lu W, et al. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system[J]. Journal of Electrochemical Society, 2007, 154(12): A1083-A1087.
[18] Wu H M, Belharouak I, Deng H, et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life[J]. Journal of Electrochemical Society, 2009, 156 (12): A1047-A1050.
[19] Borner M, Klamor S, Hoffmann B, et al. Investigations on the C-rate and temperature dependence of manganese dissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries[J]. Journal of Electrochemical Society, 2016, 163(6): A831-A837.
[20] Aravindan V, Lee Y S, Madhavi S. Research progress on negative electrodes for practical Li-ion batteries, beyond carbonaceous anodes[J]. Advanced Energy Letter, 2015,5(13): 1402225.
[21] Zou Q Q, Zhu G N, Xia Y Y. Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode[J]. Journal of Power Sources, 2012, 206: 222-229.
[22] Kim J H, Bae S Y, Min J H, et al. Study on the cycling performance of Li4Ti5O12/LiCoO2 cells assembled with ionic liquid electrolytes containing an additive[J]. Electrochimica Acta, 2012, 78: 11-16.
[23] Feng J K, Cao Y L, Ai X P, et al. Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries[J]. Journal of Power Sources,2008, 177(1): 199-204.
[24] Takahashi C, Moriya S, Fugono N, et al. Preparation and characterization of poly(4-alkyltriphenylamine) by chemical oxidative polymerization[J]. Synthesis Metal, 2002,129(2): 123-128.
[25] She Q J(佘秋洁), Wei Z K(魏志凯), Zheng M S(郑明森), et al. Electrochemical performance of polytriphenylamine as a novel non-aqueous supercapcitor cathode material[J]. Journal of Electrochemistry (电化学), 2011,17(1): 53-56.
[26] Kvarnstrom C, Petr A, Damlin P, et al. Raman and FTIR spectroscopic characterization of electrochemically synthesized poly(triphenylamine), PTPA[J]. Journal of Solid State Electrochemistry, 2002, 6(8): 505-512.

文章导航

/