欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

铅修饰的纳米多孔铂催化剂对甲酸氧化的电活性

  • 张媛媛 ,
  • 易清风 ,
  • 左葛琨琨 ,
  • 邹涛 ,
  • 刘小平 ,
  • 周秀林
展开
  • 湖南科技大学化学化工学院,湖南 湘潭,411201

收稿日期: 2017-07-07

  修回日期: 2017-12-26

  网络出版日期: 2018-01-08

基金资助

国家自然科学基金项目(21376070)

Lead Modified Nanoporous Platinum Electro-Catalysts for Formic Acid Oxidation

  • Yuanyuan Zhang ,
  • Qingfeng Yi ,
  • Gekunkun Zuo ,
  • Tao Zou ,
  • Xiaoping Liu ,
  • Xiulin Zhou
Expand
  • School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China

Received date: 2017-07-07

  Revised date: 2017-12-26

  Online published: 2018-01-08

Supported by

National Natural Science Foundation of China(21376070)

摘要

用合适金属修饰的铂催化剂能够显著增强其对甲酸氧化的电活性. 本文以水热法制备了钛负载的纳米多孔铂电极(nanoPt/Ti),然后采用循环伏安法,通过扫描不同的周数(n),用适量的铅对nanoPt/Ti电极进行修饰,得到一种新型的铅修饰的纳米多孔铂电极(nanoPb(n)-Pt/Ti). 采用循环伏安(CV)、计时电流和计时电位法研究其对对甲酸氧化的电活性. CV结果显示nanoPt/Ti和nanoPb(n)-Pt/Ti电极对甲酸氧化表现出较高的催化活性,并且nanoPb(20)-Pt/Ti电极对甲酸氧化的起始电位为-0.06 V,相比nanoPt/Ti电极的起始电位(0.06 V),明显有所负移. 此外,nanoPb(20)-Pt/Ti电极的第一个氧化峰电流密度为12.7 mA·cm-2,远远大于nanoPt电极(4.4 mA·cm-2);计时电流显示在电位为0.1 V时,在0.5 mol·L-1 H2SO4 + 1 mol·L-1 HCOOH溶液中,nanoPb(20)-Pt/Ti电极达到稳定时的电流为8.09 mA·cm-2,是nanoPt电极的60倍,表明铅修饰的nanoPt/Ti对甲酸氧化的电活性急剧增加;在1.5 mA、2 mA、2.2 mA和2.5 mA下的计时电位结果表明,nanoPb(20)-Pt/Ti电极上甲酸氧化过程表现出显著的电化学振荡,且和nanoPt/Ti电极相比,振荡现象能持续更长的时间,说明nanoPb(20)-Pt/Ti电极具有更强的表面抗毒化能力.

本文引用格式

张媛媛 , 易清风 , 左葛琨琨 , 邹涛 , 刘小平 , 周秀林 . 铅修饰的纳米多孔铂催化剂对甲酸氧化的电活性[J]. 电化学, 2018 , 24(3) : 270 -278 . DOI: 10.13208/j.electrochem.170707

Abstract

Platinum (Pt) catalysts modified by other suitable metals significantly enhance their electrochemical activities for formic acid oxidation. In this work, a titanium-supported nanoporous network platinum (nanoPt/Ti) electrode was prepared using a hydrothermal method. The as-prepared nanoPt/Ti electrode was modified with a certain amount of lead by using cyclic voltammetry for different scan cycle numbers (n), namely, n = 10, 15, 20 and 30, to synthesize the novel lead-modified nanoporous Pt (nanoPb(n)-Pt/Ti) electrodes. Electro-oxidation of formic acid on these electrodes was studied with cyclic voltammetry (CV), chronoamperometry and chronopotentiometry in sulfuric acid solution. CV curves showed that both nanoPt/Ti and nanoPb(n)-Pt/Ti electrodes displayed high electrocatalytic activities for formic acid oxidation, and the onset potential of formic acid oxidation on the nanoPb(20)-Pt/Ti electrode was -0.06 V, which was more negative than that on the nanoPt/Ti electrode (0.06 V). In addition, the first oxidation peak current density on the nanoPb(20)-Pt/Ti electrode was 12.7 mA·cm-2, which was far larger than that on the nanoPt electrode (4.4 mA·cm-2). Chronoamperommetric data at 0.1 V in 0.5 mol·L-1 H2SO4 + 1 mol·L-1 HCOOH suggested that the nanoPb(20)-Pt/Ti electrode exhibited the stable current density of 8.09 mA·cm-2 which was 60 times higher than the nanoPt electrode, indicating the dramatic enhancement of electroactivity on the lead-modified nanoPt/Ti electrode for formic acid oxidation with comparison to the nanoPt/Ti electrode. Chronopotentiometric responses on the electrode at 1.5 mA, 2 mA, 2.2 mA and 2.5 mA in 0.5 mol·L-1 H2SO4 + 1 mol·L-1 HCOOH revealed notable electrochemical oscillations which lasted longer time than those on the nanoPt/Ti electrode. It was demonstrated that the lead-modified nanoPb(20)-Pt/Ti electrode presented the most significant enhancement on surface anti-poisoning ability.

参考文献

[1]  Mert S O, Reis A. Exergoeconomic analysis of a direct formic acid fuel cell system[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2981-2986.
[2]  Tsujiguchi T, Matsuoka F, Hokari Y, et al. Overpotential analysis of the direct formic acid fuel cell[J]. Electrochimica Acta, 2016, 197: 32-38. 
[3]  Ren M J(任明军), Zou L L(邹亮亮), Chen J(陈举), et al. Electrocatalytic oxidation of formic acid on Pd/Ni heterostructured catalyst[J]. Journal of Electrochemistry(电化学), 2012, 3(5): 515-520.
[4]  Yang S D(杨苏东), Liang Y Y(梁彦瑜), Wen Z L(温祝亮), et al. Comparison of catalytic performance on different materials supported Pd catalysts for formic acid oxidation[J]. Journal of Electrochemistry(电化学), 2011, 17(2): 175-179.
[5]  Hong P, Luo F, Liao S J, et al. Effects of Pt/C, Pd/C and PdPt/C anode catalysts on the performance and stability of air breathing direct formic acid fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8518-8524.
[6]  Mohammada A M, El-Nagara G A, Al-Akraab I M, et al. Towards improving the catalytic activity and stability of platinum-based anodes in direct formic acid fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7808-7816.
[7]  Gralec B, Lewera A. Catalytic activity of unsupported Pd-Pt nanoalloys with low Pt content towards formic acid oxidation[J]. Applied Catalysis B: Environmental, 2016, 192: 304-310.
[8]  Ha S, Larsen R, Masel R I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. Journal of Power Sources, 2005, 144(1): 28-34.
[9]  Xu J(徐杰), Jiang D C(江道传), Mei D(梅东), et al. Recent progress in the mechanistic understanding of formic acid oxidation on Pt electrode[J]. Journal of Electrochemistry(电化学), 2014, 20(4): 333-342.
[10] Yi Q F(易清风). Electrochemical oxidation of formic acid on novel titanium-supported nanoporous network platinum electrode[J]. Journal of Chemical Industry & Engineering(化工学报), 2007, 58(2): 446-451.
[11]  Li M C(李美超), Wang W Y(汪伍洋), Ma C A(马淳安). A simple method to improve electrocatalytic activity of Pt for formic acid oxidation[J]. Chinese Journal of Catalysis(催化学报), 2009, 30(11): 1073-1075.
[12]  Yu X, Pickup P G. Pb and Sb modified Pt/C catalysts for direct formic acid fuel cells[J]. Electrochimica Acta, 2010, 55(24): 7354-7361.
[13]  Yu X, Pickup P G. Effects of iron-tetrasulfophthalocyanine on the catalytic activities of Pt/C, PtRu/C, and Pd/C catalysts in a multi-anode direct formic acid fuel cell[J]. Journal of Applied Electrochemistry, 2010, 40(4): 799-807.
[14]  Zhang B W, Zhang Z C, Liao H G, et al. Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation[J]. Nano Energy, 2016, 19: 198-209. 
[15]  Yu X, Pickup P G. Screening of PdM and PtM catalysts in a multi-anode direct formic acid fuel cell[J]. Journal of Applied Electrochemistry, 2011, 41(5): 589-597.
[16]  Alden L R, Han D K, Matsumoto F, et al. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: Electrocatalytic oxidation of formic acid[J]. Chemistry of Materials, 2006, 18(23): 5591-5596.
[17]  Ghosh T, Matsumoto F, Mcinnis J, et al. PtPb nanoparticle electrocatalysts: Control of activity through synthetic methods[J]. Journal of Nanoparticle Research, 2009, 11(4): 965-980.
[18]  Zhou R(周蓉), Zhang H M(张红梅), Du Y K(杜玉扣), et al. Study on electrodeposition of Pt-Au bimetallic catalysts and their electrocatalytic oxidation for formic acid[J]. Acta Chimica Sinica(化学学报), 2011, 69(13): 1533- 1539.
[19]  Tripkovic A V, Popovic K D, Stevanovic R M, et al. Activity of a PtBi alloy in the electrochemical oxidation of formic acid[J]. Electrochemistry Communications, 2006, 8(9): 1492-1498.
[20]  Zhang L J(张丽娟), Xia D G(夏定国), Wang Z Y(王振尧), et al. Intermetallic PtBi as methanol-tolerant catalysts for oxygen reduction[J]. Acta Physico-Chimica Sinica(物理化学学报), 2005, 21(3): 287-290.
[21]  Yu X W, Pickup P G. Carbon supported PtBi catalysts for direct formic acid fuel cells[J]. Electrochimica Acta, 2011, 56(11): 4037-4043.
[22]  Li H(李红), Jing L C(江琳才), Jiang X(蒋雄). Electrocatalytic oxidation of formaldehyde and formic acid on a Pt/Sbad electrode[J]. Journal of Electrochemistry(电化学), 1995, 1(1): 56-63.
[23]  Casadorivera E, Gál Z, Angelo A C, et al. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface[J]. ChemPhysChem, 2003, 4(2): 193-199.
[24]  Ghosh T, Matsumoto F, Mcinnis J, et al. PtPb nanoparticle electrocatalysts: Control of activity through synthetic methods[J]. Journal of Nanoparticle Research, 2009, 11(4): 965-980.
[25]  Huang Y Y, Zheng S Y, Lin X J, et al. Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation[J]. Electrochimica Acta, 2012, 63: 346-353.
[26]  Jana R, Subbarao U, Peter S C. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol[J]. Journal of Power Sources, 2016, 301: 160-169.
[27]  Zhang X, Zhang B, Liu D Y, et al. One-pot synthesis of ternary alloy CuFePt nanoparticles anchored on reduced graphene oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions[J]. Electrochimica Acta, 2015, 177: 93-99.
[28]  An L, Yan H L, Li B, et al. Highly active N-PtTe/reduced graphene oxide intermetallic catalyst for formic acid oxidation[J]. Nano Energy, 2015, 15: 24-32.
[29]  Bai Y C, Zhang W D, Chen C H, et al. Carbon nanotubes-supported PtAu-alloy nanoparticles for electro-oxidation of formic acid with remarkable activity[J]. Journal of Alloys & Compounds, 2011, 509(3): 1029-1034.
[30]  Sun Z P, Zhang X G, Liu R L, et al. A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation[J]. Journal of Power Sources, 2008, 185(2): 801-806.

文章导航

/