欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

可见光诱导提升Pt/g-C3N4纳米片甲酸氧化性能的研究

  • 孙雍荣 ,
  • 杜春雨 ,
  • 韩国康 ,
  • 王雅静 ,
  • 高云智 ,
  • 尹鸽平
展开
  • 1. 哈尔滨工业大学化工与化学学院,特种化学电源研究所, 哈尔滨 黑龙江 150001;2. 哈尔滨工业大学化工与化学学院, 哈尔滨 黑龙江 150001

收稿日期: 2017-06-27

  修回日期: 2017-09-20

  网络出版日期: 2017-09-29

基金资助

国家自然科学基金项目(No. 21376057,No. 21433003)资助

Pt/g-C3N4 Nanosheet for Visible Light –Induced Enhancement of the Activity for Formic Acid Electro-oxidation

  • SUN Yong-rong ,
  • DU Chun-yu ,
  • HAN Guo-kang ,
  • WANG Ya-jing ,
  • GAO Yun-zhi ,
  • YIN Ge-ping
Expand
  • Institute of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2017-06-27

  Revised date: 2017-09-20

  Online published: 2017-09-29

摘要

以半导体材料类石墨氮化碳纳米片(g-C3N4纳米片)为载体,通过微波-多元醇法构筑了Pt/g-C3N4纳米片催化剂. 通过TEM、XRD、XPS、紫外-可见吸收光谱等方法对Pt/g-C3N4纳米片催化剂的粒径尺寸、组成、结构、光学等性质进行分析. 通过对比可见光照和暗室条件下的甲酸电氧化活性,Pt/g-C3N4纳米片催化剂在可见光照射下展现出良好的催化性能. 该性能的提高一方面可能是由于g-C3N4纳米片在可见光照射下加速了电子从Pt转移给g-C3N4纳米片,Pt处于“电子匮乏”状态,可削弱CO与Pt之间的化学键能,减弱CO在Pt表面的吸附能力,促进了CO的氧化,提高了催化剂抗中毒能力;另一方面,g-C3N4纳米片在光照条件下分离出的空穴可有效氧化甲酸分子,提高甲酸氧化活性. 因此,可见光条件下可有效提高Pt/g-C3N4纳米片催化剂甲酸催化氧化活性,这为直接甲酸燃料电池的发展提供了新思路.

本文引用格式

孙雍荣 , 杜春雨 , 韩国康 , 王雅静 , 高云智 , 尹鸽平 . 可见光诱导提升Pt/g-C3N4纳米片甲酸氧化性能的研究[J]. 电化学, 2018 , 24(3) : 262 -269 . DOI: 10.13208/j.electrochem.170627

Abstract

By using graphitic carbon nitride nanosheet (g-C3N4 nanosheet) as a support,Pt/g-C3N4 nanosheet catalyst was fabricated by microwave assisted polylol process. The nanoparticles size,composition,structure and optical properties of Pt/g-C3N4 nanosheet were characterized by TEM,XRD,XPS and UV-Vis diffuse reflectance spectroscopy. Comparing with the catalytic activities toward formic acid electro-oxidation under dark and visible light illumination,the superior activity of Pt/g-C3N4 nanosheet catalyst was achieved under visible light illumination. This visible light-driven enhancement in the formic acid performance could be attributed to the plasmon-induced electron-hole separation on g-C3N4 with visible light illumination. The photo-generated hot electron promoted the oxidation of formic acid molecules. The current density of g-C3N4 nanosheet was increased under visible light illumination in the presence of formic acid. More importantly,the fast electron transfer from Pt to g-C3N4 nanosheet under visible light illumination adjusted the electronic structure of Pt. The “electron deficient” state of Pt could weaken the adsorption energy of CO (as a poisoning species),facilitating CO oxidation. The rapid removal of poisoning species on Pt would provide more catalytic activity sites for the oxidation of formic acid,enhancing formic acid catalytic activity. The visible light-assisted enhancement in the electrochemical formic acid activity provides a development strategy for direct formic acid fuel cells.

参考文献

[1]  Liu W,Huang J J. Electro-oxidation of formic acid on carbon supported Pt-Os catalyst[J]. Journal of Power Sources, 2009, 189(2): 1012-1015.
[2]  Kim B J,Kwon K,Rhee C K,et al. Modification of Pt nanoelectrodes dispersed on carbon support using irreversible adsorption of Bi to enhance formic acid oxidation[J]. Electrochimica Acta, 2008, 53(26): 7744-7750.
[3]  Joo J,Uchida T,Cuesta A,et al. Importance of acid-based equilibrium in electrocatalytic oxidation of formic acid on platinum[J]. Journal of the American Chemical Society, 2013, 135(27): 9991-9994.
[4]  Wang H F,Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation mode[J]. Journal of Physical Chemistry C, 2009, 113(40): 17502-17508.
[5]  Gao W,Keith J A,Anton J,et al. Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt (111)[J]. Journal of the American Chemical Society, 2010, 132(51): 18377-18385.
[6]  Chen Y X,Ye S,Heinen M,et al. Application of in-situ attenuated total reflection-Fourier transfer infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: Formic acid oxidation on a Pt film electrode at elevated temperatures[J]. Journal of Physical Chemistry B, 2006, 110(19): 9534-9544.
[7]  Chen Y X,Heinen M,Jusys Z,et al. Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie-International Edition,2006,45(6): 981-985.
[8]  Mantharan R,Goodenough J B. Methanol oxidation in acid on ordered NiTi[J]. Journal of Materials Chemistry,1992, 2(8): 875-887.
[9]  He D P,Jiang Y L,Lv H F,et al. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability[J]. Applied Catalysis B-Environmental, 2013, 132(1): 379-388.
[10]  Zhu J J,Xiao P,Li H L,et al. Graphitic carbon nitride: Synthesis,properties,and applications in catalysis[J]. Applied Catalysis B-Environmental, 2014, 6(19): 16449-16465.
[11]  Wei X B,Shao C L,Li X H,et al. Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution[J]. Nanoscale, 2016, 8(1): 11034-11043.
[12]  Xue J J,Ma S S,Zhou Y M,et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9630-9637.
[13]  Kessler F K,Zheng Y,Schwarz D,et al. Functional carbon nitride materials-design strategies for electrochemical devices[J]. Nature Materials, 2017, 2(1): 1-17.
[14]  Sagara N,Kamimura S,Tsubota T,et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light[J]. Applied Catalysis B: Environmental, 2016, 192(1): 193-198.
[15]  Gu D M,Chu Y Y,Wang Z B,et al. Methanol oxidation on Pt/CeO2-C electrocatalyst prepared by microwave-assisted ethylene glycol process[J]. Applied Catalysis B: Environmental, 2011, 102(1): 9-18.
[16]  Samanta S, Martha S, Parida K. Facile synthesis of Au/g-C3N4 nanocomposites: An inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation[J]. ChemCatChem, 2014, 6(5): 1453-1462.
[17]  Han C C,Wu L N,Ge L,et al. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation[J]. Carbon, 2015, 92(1): 31-40.
[18]  Hammer B,Norskov J K. Electronic factors determining the reactivity of metal surfaces[J]. Surfce Science,1995, 343(3): 211-220.
[19]  Jin R R(金瑞瑞), You J G(游继光), Zhang Q(张倩),et al. Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Physico-Chimica Sinica(物理化学学报) 2014,30(9): 1706-1712.
[20]  Zhang Z H, Yu Y J, Wang P. Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 990-996.
[21]  Xu J (徐杰), Jiang D C (江道传), Mei D (梅东), et al. Recent process in the mechanistic understanding of formic acid oxidation on Pt electrode[J]. Journal of Electrochemistry(电化学), 2014, 20(4): 333-342.
[22]  Xia X H(夏兴华), Iwasita T, Vielstich W. Study of the nature of formic acid adsorbates on rough Pt and its interaction with CO[J]. Journal of Electrochemistry(电化学), 1997, 3(1): 26-39.
[23]  Yang S D(杨苏东), Liang Y Y(梁彦瑜), Wen Z L(温祝亮), et al. Comparison of catalytic performance on different materials supported Pd catalysts for formic acid oxidation[J]. Journal of Electrochemistry(电化学), 2011, 17(2): 175-179.

文章导航

/