欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

金属线电极分形生长的模拟

  • 丁莉峰 ,
  • 毛沛元 ,
  • 程军 ,
  • 牛宇岚 ,
  • 文宇浩 ,
  • 程玮
展开
  • 太原工业学院化学与化工系,山西 太原 030008

收稿日期: 2017-07-11

  修回日期: 2017-09-06

  网络出版日期: 2017-09-11

基金资助

国家自然科学基金青年基金项目(No. NSFC51604180)、山西省应用基础研究计划项目面上青年基金项目(No. 201701D221036)、山西省高等学校大学生创新创业训练项目(No. 201614101009)、太原工业学院教学改革研究项目(No. 2015YJ08)及太原工业学院青年学术带头人支持计划资助

Simulation of Fractal Growth on Metal Wire Electrode

  • DING Li-feng ,
  • MAO Pei-yuan ,
  • CHENG Jun ,
  • NIU Yu-lan ,
  • WEN Yu-hao ,
  • CHEN Wei
Expand
  • Department of Chemistry and Chemical Engineering, Taiyuan institute of technology, taiyuan 030008, Shanxi, China

Received date: 2017-07-11

  Revised date: 2017-09-06

  Online published: 2017-09-11

摘要

电沉积金属过程中,阴极沉积的金属边缘会出现包括枝晶生长在内的许多复杂形态,这会严重影响电沉积产品的质量和加工过程中的电流效率. 对枝晶分形生长的过程以及形貌进行研究,可以实现对沉淀物的可控生长. 本研究使用Python和Matlab软件相互结合,基于扩散限制凝聚(DLA)模型,建立平行线电极电沉积的模型. 通过分析不同粒子数、沉积概率、电极间距、运动步长、定向漂移条件下的分形生长的变化规律,以及模拟参数与实际电沉积因素对分形生长影响的内在联系,发现只要合理控制模拟的粒子数、沉积概率、线电极间距、运动步长、定向漂移概率参数即可与实际电化学体系的浓度和沉积时间、还原概率、两极间距、温度和电压、电极的相对位置和形状一一对应,从而模拟得到跟实际电沉积接近的分形图,最终可实现对分形生长的可控操作,对分形生长在工业电沉积等方面应用有很大的意义.

本文引用格式

丁莉峰 , 毛沛元 , 程军 , 牛宇岚 , 文宇浩 , 程玮 . 金属线电极分形生长的模拟[J]. 电化学, 2018 , 24(3) : 285 -291 . DOI: 10.13208/j.electrochem.170711

Abstract

During processes of metal electrodepostion, there exist many complex morphological forms such as dendritic growing in the cathode deposited metal edge, which will seriously affect the quality of the electrodeposited product and current efficiency during machining. Investigations on dendritic crystal growing process and morphology could help controlling growth of electrolysis precipitate. In this work, Python and Matlab softwares were used, and the model of parallel electrode electrodeposition was established based on the diffusion-limited aggregation (DLA) model. By analyzing the law of fractal growth at different conditions of the particles number, probability, electrode spacing, the movement step length and orientation drift, and the inner link between simulation parameters and practical factors that affect fractal growth of electrodeposition, it was found that the simulation results can match the actual parameters by controlling the simulation parameters such as particles number, wire electrode spacing, movement step length and orientation drift probability. The inner connection between simulated parameters and actual electrodeposition factors is discussed. Finally, the specific electrodeposition experiments can be simulated by changing the computer variables, which is controllable and crucial to applying the fractal growth to industry electrolysis.

参考文献

1]  Ding L F, Fan X, Du J, et al. Influence of three N-based auxiliary additives during the electrodeposition of manganese[J]. International Journal of Mineral Processing, 2014, 130(4):34-41.
[2]  Brady R M, Ball R C. Fractal growth of copper electrodeposits[J]. Nature, 1984, 309(5965): 225-229.
[3]  Imre A R, Balazs L. Fractal behavior of tree-like nickel and cobalt electrodeposits[J]. Fractals, 2000, 8(4): 349-353.
[4]  Fan Z B(范宗波). Quasi-one dimensional metal fractal growth and its application in supercapacitors[D]. Chongqing: Chongqing University(重庆: 重庆大学), 2015.
[5]  Meng X L(孟宪玲), Yang H B(杨化滨), Yang E D(杨恩东), et al. Preparation and electrochemical performance of Zn-La alloys[J]. Journal of Electrochemistry(电化学), 2003,9(2): 133-138.
[6]  Nakouzi E, Sultan R. Fractal structures in two-metal electrodeposition systems I: Pb and Zn[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011, 21(4): 043133.
[7]  Nakouzi E, Sultan R. Fractal structures in two-metal electrodeposition systems II: Cu and Zn[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, 22(2): 023122.
[8]  Zhang H D(张皓东), Xie G(谢刚), Li R X(李荣兴), et al. Dendrite growth of metal zinc in electrodeposition process[J].Chemical Reserch(化学研究), 2005, 16(1): 52-54.
[9]  Ding L F(丁莉峰). Study on nonlinear kinetics during electro-synthesis of metal Mn and KMnO4[D]. Chongqing: Chongqing University(重庆: 重庆大学), 2014.
[10]  Ghosh A, Batabyal R, Das G P, et al. An extended fractal growth regime in the diffusion limited aggregation including edge diffusion[J]. AIP Advances, 2016, 6(1): 1-2.
[11]  Milchev A. Electrocrystallization: Nucleation and growth of nano-clusters on solid surfaces[J]. Russian Journal of Electrochemistry, 2008, 44(6): 619-645.
[12]  Wang G F(王桂峰), Huang Y H(黄因慧), Tian Z J(田宗军),et al. Fractal dimension of dendritic growth of metal Ni in electrodeposition[J]. Materials for Mechanical Engineering(机械工程材料), 2008, 32(8): 16-19.
[13]  Liu R(刘润), Gong K(宫凯). Fractal growth of Ni dendrite in electrodeposition[J]. Journal of Materials Science & Engineering(材料科学与工程学报), 2009, 27(6): 902-905.
[14]  Xiong J(熊晋), Xu X Z(徐献芝), Li F(李芬), et al. Computer simulation on the fractal growth of electrolytic zinc[J]. Electronic Technology(电子技术), 2011, 38(12): 23-24.
[15]  Sun B, Zou X W, Jin Z Z. Morphological evolution in the electrodeposition of the Pb-Sn binary system[J]. Physical Review E, 2004, 69(6): 067202.
[16]  Tian Z J(田宗军), Wang G F(王桂峰), Huang Y H(黄因慧), et al. Dendrite growth in electrode position at various concentration of electrolyte[J]. Materials for Mechanical Engineering(机械科学与技术), 2008.27(11):1266-1270.
[17]  Chen J S(陈劲松). Preparation of nickle dendritic crystal by electrochemical deposition method [J]. Journal of Synthetic Crystals(人工晶体学报), 2013, 42(6): 1237-1240.
[18]  Wang K, Pei P, Ma Z, et al. Dendrite growth in the recharging process of zinc-air batteries[J]. Journal of Materials Chemistry A, 2015, 3(45): 22648-22655.
[19]  Witten T A, Sander L M. Diffusion-limited aggregation[J]. Physical Review B, 1983, 27(9): 5686-5697.
[20]  Wang G F(王桂峰). Fractal study on dendritic growth of metal Ni in electrodeposition process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics(南京:南京航空航天大学), 2007.
[21]  Zhang H D(张皓东), Xie G(谢刚), Li R X(李荣兴), et al. Computer simulation of two-dimensional dendritic crystal growth in metal electrodepositing with parallel plate as cathode[J]. Journal of Kunming University of Science and Technology(Science and Technology)(昆明理工大学学报(理工版)), 2005, 30(3):31-34.
[22]  Matsushita M, Hayakawa Y, Sawada Y. Fractal structure and cluster statistics of zinc-metal trees deposited on a line electrode[J]. Physical Review A, 1985, 32(6): 3814-3816.
[23]  Tian Z J(田宗军), Wang G F(王桂峰), Huang Y H(黄因慧), et al. Numerical simulation of Ni dendrite fractal growth in jet-electrodeposition[J]. Materials for Mechanical Engineering(机械工程材料), 2009, 33(9): 41-43.
[24]  Shaikh Y H, Khan A R, Pathan J M, et al. Fractal pattern growth simulation in electrodeposition and study of the shifting of center of mass[J]. Chaos, Solitons & Fractals, 2009, 42(5): 2796-2803.
[25]  Li J, Du Q, Sun C X. An improved box-counting method for image fractal dimension estimation[J]. Pattern Recognition, 2009, 42(11): 2460-2469.
[26]  Fernández-Martìnez M, Sánchez-Granero M A. A new fractal dimension for curves based on fractal structures[J]. Topology and its Applications, 2016, 203(SI): 108-124.
[27]  Heinson W R, Sorensen C M, Chakrabarti A. Does shape anisotropy control the fractal dimension in diffusion-limited cluster-cluster aggregation[J]. Aerosol Science and Technology, 2010, 44(12): i-iv.
[28]  Nikiforov V V. Reasons for the low deposition probability of metal adatom layers at single-crystal semiconductor electrodes[J]. Russian Journal of Electrochemistry, 2005, 41(2): 213-213.
[29]  Wang G F(王桂峰), Huang Y H(黄因慧), Tian Z J(田宗军), et al. Fractal growth of Ni dendrite in electrode position under various temperatures[J]. Mechanical Science and Technology for Aerospace Engineering(机械科学与技术) 2009, 28(10): 1303-1307.

文章导航

/